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LEP has been built in order to importance in
explore the mass range of 100 GeV, understanding the dark matter in the
corresponding to dimensions of Universe. proton events up to an energy of

10-18 m, which is the ideal domain to | We would like finally to know why 1700 GeV in the centre-of- mass with

test . Standard Model of particles the W and Z have such a huge mass, collisions against the LEP electron
and interactions. Its success however ’wher eas the photon is massless. ~  beam, and ion-ion collisions up to an

does raise new questions which
cannot be answered by LEP alone.

‘More generally, does the Higgs field energy of 1312 TeV: per nucleus, using
permeate the vacuum or is there  |lead-ion beams from the lead-ion

One more quark, the top quark has solanother mechanism that provides |source to be added to the CERN

far escaped detection and we believe

that it would be very
unlikely that it lies
within the operating
range of LEP.

We would li

know if in addition to
three families of
quarks and leptons
there are types of yet l
undetected particle

families, called su er:-
ymmetric particles

S :
These particles if
discovered may
have a fundamental

particles with mass? o |accelerator complex in the next years.
These are among the most { If the LHC is approved by 1992, the
}Dl‘OfOUHd questions which now construction could be completed by

confront us in physics. To answer ( 1997 and the first expenments could
them Wwe need to achieve a further ' commence in 1998, With both LEP200
order of magnifude in resolution, MI be able to

down to 10-19 m, which implies ‘maintain its prominent position in

collision energies at the constituents  particle physics in the world and face

level in the 1000 GeV(1TeV) range. ihe challenges of research all the way
This is the Large Hadron Collider )] the end of the present millennium

 (LHC) project illustrated in this ‘and well beyond with great
- publication. It would achieve proton: onfidence.

proton collisions of 16,000 GeV
(or 16 TeV) in the centre-of-mass,

CaAr iA/(Av

‘and also allow two other types of
' particle collision, namely electron- » Carlo Rubbia
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What Questions Remain? Page 1 of 1

The ATLAS Experiment

| “}1’3‘ KE GL:

B m Introducti ¢s Experiment Accelerator

What Questions Remain?

The Standard Model answers many of the questions of the structure and stability of
matter with its six types of quarks, six leptons, and the four forces.

But the Standard Model leaves many other questions unanswered:

e Why are there three types of quarks and leptons of each charge?
e Is there some pattern to their masses?
e Are there more types of particles and forces to be discovered at yet higher-
energy accelerators?
o Are the quarks and leptons really fundamental, or do they, too, have
| substructure?
o What particles form the dark matter in the universe?
o How can the gravitational interactions be included in the standard model?

| Hmm.. The ATLAS

#‘ Experiment will provice
‘ﬁ SOME ANSWErs.

Questions such as these drive particle physicists to build and operate new
accelerators, such as the LHC with the ATLAS detector, in the hope that higher-
energy collisions can provide clues to their answers.

Watch the ATLAS Movie
ATLAS Coliaboration

ATLAS Multimedia

ATLAS eNews Education Committee Glossary

Detector Description!

httpi//atlasexperiment.org/etours_physics/etours_physicsOS.htmI 2004-08-28




Understanding Matter, Energy, Space and Time:
The Case for the Linear Collider

A summary of the scientific case for the e* e™ Linear Collider, representing a
broad consensus of the particle physics community.

April 2003



» Understanding the Higgs boson

The prime goal for the next round of experimentation is finding the agent that
gives mass to the gauge bosons, quarks and leptons. This quest offers an
excellent illustration of how the LHC and the e*e™ Linear Collider will magnify
each other’s power. If the answer is the standard model Higgs boson, the LHC
will see it. However, the backgrounds to the Higgs production process at the
LHC are large, making the measurements of the couplings to quarks, quantum
numbers, or Higgs self-couplings difficult. The LC can make the Higgs boson with
little background, producing it in association with only one or two additional
particles, and can therefore measure the Higgs properties much more accurately.
Even if it decays into invisible particles, the Higgs can be easily seen and studied
at the LC through its recoil from a visible Z boson.

The precision measurements at the LC are crucial for revealing the character of
the Higgs boson. If the symmetry of the electroweak interaction is broken in a
more complicated way than foreseen in the standard model, these same
precision measurements, together with new very precise studies of the W and Z
bosons and the top quark only possible at the LC, will strongly constrain the
alternate picture.

= New discoveries beyond the standard model

Although the standard model with the simplest Higgs boson is in excellent
agreement with all we have observed so far, there are very strong reasons for
believing that this is far from the complete story. We now know of at least two
disparate energy scales that operate for elementary particle physics: the Planck
scale at about 10'? GeV where the strengths of gravity and the other interactions
become comparable, and the electroweak scale at a few hundred GeV. In
addition, the strengths of the strong, electromagnetic and weak forces become
similar at about 10'® GeV where many theories suggest the possibility of grand
unification of the three forces. However, an extrapolation of present
measurements to higher energies with the simple standard model fails to provide
exact unification. To achieve it, some new physics is required at the 100 — 1000
GeV scale. Moreover, the extreme disparity of the electroweak and Planck
scales cannot be understood in the standard model; the Higgs, W and Z boson
masses are all unstable to quantum fluctuations and would naturally rise to the
Planck scale without some new physics at the few hundred GeV scale. This
behavior, known as the hierarchy problem, gives us confidence that the standard
model with its Higgs boson will be supplemented with new phenomena at the
TeV scale and that these can be discovered by the LC or LHC.

One such possibility is the existence of new supersymmetric space and time

coordinates, which brings a set of sister supersymmetric ‘sparticles’ nearly
identical to all the particles we presently know, save that the partner of a fermion



As discussed above, one of the main advances in particle physics in the past
decade was the accelerator-based studies at the energy frontier leading to the
prospect for Higgs boson discoveries and possible new phenomena such as
supersymmetry. Another important front has been the rapid evolution of our
knowledge about neutrinos. Experiments, particularly those at underground
laboratories, have now demonstrated that neutrinos have non-zero mass and
that they mix in a way analogous to the quarks, although the numerical values of
masses and mixing angles are puzzling.

The small neutrino masses may suggest the presence of new physics at a scale
near the grand unification energy. The connection between such a high energy
scale glimpsed through the neutrino masses and that inferred from precision
studies at the LC may prove to be deep and illuminating. Though not yet
demonstrated experimentally, the possibility that charge conjugation and parity
(CP) symmetry violation could occur for neutrinos, as well as for quarks, offers a
potential opportunity to gain new understanding of the puzzling excess of matter
over antimatter in the universe. The LC studies of CP violation effects in
supersymmetric particles, taken together with the information from the quark and
neutrino sectors, could lead to a more fundamental understanding of origin of the
matter-antimatter asymmetry.

Increasingly, particle physics is intertwined with cosmology, and particle
astrophysics, and the combination of ideas and methods brings qualitatively new
insights.

Cosmologists have deduced from the measurements of the cosmic microwave
background that there is almost exactly the right amount of matter and energy to
close the universe, but the ordinary matter of stars and interstellar gas comprises
only about 4% of the necessary material. Another 23% is inferred from galactic
motions as ‘dark matter The be ate to ) date is the lightest of

73% or so of the universe's matter is inferred from experiments that study
supernova explosions using techniques of particle physics experiments, and is
presently wholly mysterious. The standard model predicts that the Higgs boson
would contribute far too much ‘dark energy’ to the universe, so some new
physics beyond the standard model would be needed to counteract it. We may
hope that the LC and LHC can give us a clue of what this new ingredient could
be.

The ultra-high energy cosmic ray particles coming from outer space defy
conventional explanation, and may well be harbingers of new particle physics at
very high energies, comparable to what can be sensed through the precision
measurements at the LHC and LC.

Future LHC and LC experiments will tell us how the unified electroweak force
operates. Particle physics experiments have also brought understanding of the



is a boson, and vice versa. (Fermions such as electrons and quarks have % unit
of intrinsic spin; bosons have spins of 0 or 1 unit.) We have seen no such
supersymmetric particles in experiments to date, but there is reason to expect
some of them below a few hundred GeV.

If supersymmetry exists and bears upon the hierarchy problem, we are confident
that the LHC will discover it and observe some of the superpartners — in
particular the sisters of the quarks and gluons. The partners of the electron,
muon, neutrinos, v, W, and Z are difficult to study precisely at the LHC, but their
properties can be measured in detail at the LC. While the LHC has a larger
mass reach for superpartners, the precision with which the LC can determine the
mass of the accessible sparticles is substantially better (by about an order of
magnitude) than for LHC. This is important for sorting out the kind of
supersymmetric theory at work, and in pointing the way to how the
supersymmetrii?elf is broken at much higher energies. For the accessible
sparticles, the LC will be capable of measuring the full range of their defining
properties such as mass, spin, parity, and the mixing parameters among the
states of similar character.

In supersymmetry, there is more than one Higgs boson, and the LHC and LC
give quite complementary capabilities to discover them and measure their
properties. The LC is also unique in its ability to measure the mass of the lightest
sparticle precisely. To understand the cosmological origin of this particle, it is
necessary to establish its character as a partner of Higgs or of gauge bosons —
and the measurements of its couplings at the LC will be unique in establishing
this. Knowledge of the lightest particle properties will in turn permit the LHC
experiments to make their measurements much more incisive. In many cases,
each accelerator must provide crucial information for the other to maximize the
sensitivity of its studies, so the combination is much more powerful than the sum
of the two independent endeavors.

Other ideas to solve the hierarchy problem postulate extra spatial dimensions
beyond the three that we know, or new particles at the several TeV scale. If such
ideas are correct, we again expect observable consequences at the LHC and the
LC and a synergy will exist between them. For example, the LC and LHC
combined can deduce both the size and number of extra dimensions. The new
states expected from extra dimensions could perhaps be sensed directly at the
LHC, but the precision measurements at the LC can measure their effects even
for particles well above the range of the direct measurements.

= The benefit of precision measurements and the interplay of LHC and LC
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