Mirror World: visible & dark matter genesis

neutrinos, neutrons etc.

Zurab Berezhiani

Università di L'Aquila and LNGS, Italy
Standard Cosmological Paradigm

Precision data on BBN, CMB, LSS, etc. lead to Standard Paradigm:

The early Universe:
- multi-stage: Inflation \rightarrow (re)heating \rightarrow Friedmann epoch ...
- Universe is flat and homogeneous ...
- Adiabatic perturbations with nearly flat spectrum ...

Today's Universe:
- multi-component: visible matter, dark matter, dark energy ...

- $\Omega_{\text{tot}} \approx 1$ Universe is flat: $\rho_{\text{tot}} = \rho_{\text{cr}}$...
- $\Omega_{B} \approx 0.04$ visible (Baryon) matter is a small fraction ...
- $\Omega_{D} \approx 0.20$ dark matter: WIMPS? Axions?
- $\Omega_{\Lambda} \approx 0.75$ dark energy: Λ-term? 5th-essence?
Standard Cosmological Paradigm

Precision data on BBN, CMB, LSS, etc. lead to Standard Paradigm:

The early Universe:
- multi-stage: Inflation \rightarrow (re)heating \rightarrow Friedmann epoch ...
- Universe is flat and homogeneous ...
- Adiabatic perturbations with nearly flat spectrum ...

Todays Universe:
- multi-component: visible matter, dark matter, dark energy ...
 - $\Omega_{\text{tot}} \approx 1$ Universe is flat: $\rho_{\text{tot}} = \rho_{cr}$...
 - $\Omega_B \approx 0.04$ visible (Baryon) matter is a small fraction ...
 - $\Omega_D \approx 0.20$ dark matter: WIMPS? Axions?
 - $\Omega_\Lambda \approx 0.75$ dark energy: Λ-term? 5th-essence?

Some unified picture?
Well, not yet ... the origin and nature of DM and DE remain open!
Cosmic coincidence of matter ($\Omega_M = \Omega_D + \Omega_B$) and dark energy ($\Omega_\Lambda$):

$$\frac{\Omega_M}{\Omega_\Lambda} \approx 0.3 : \quad \rho_\Lambda \sim \text{Const.}, \quad \rho_M \sim a^{-3}.$$

- Why $\rho_M/\rho_\Lambda \approx 1$ – just Today?
Coincidence & Fine Tuning Problems

Cosmic coincidence of matter \((\Omega_M=\Omega_D+\Omega_B)\) and dark energy \((\Omega_\Lambda)\) :
\[
\frac{\Omega_M}{\Omega_\Lambda} \simeq 0.3 : \quad \rho_\Lambda \sim \text{Const.}, \quad \rho_M \sim a^{-3}.
\]

- Why \(\rho_M/\rho_\Lambda \sim 1 \quad – \text{just Today?}\)

Well, if not Today, then it would be Yesterday or Tomorrow ...

– Anthropic principle or Voltairian response

"We are just lucky to live in the best time of the best world ..."
Coincidence & Fine Tuning Problems

Cosmic coincidence of matter ($\Omega_M = \Omega_D + \Omega_B$) and dark energy ($\Omega_\Lambda$):

$$\Omega_M / \Omega_\Lambda \simeq 0.3 : \quad \rho_\Lambda \sim \text{Const.}, \quad \rho_M \sim a^{-3}. $$

- Why $\rho_M / \rho_\Lambda \sim 1$ – just Today?

Well, if not Today, then it would be Yesterday or Tomorrow ...
– Anthropic principle or Voltairian response
"We are just lucky to live in the best time of the best world ..."

Miracle Fine Tuning between visible (Ω_B) and dark (Ω_D) matter:

$$\Omega_B / \Omega_D \simeq 0.2 : \quad \rho_B \sim a^{-3}, \quad \rho_D \sim a^{-3}. $$

- Why then $\rho_B / \rho_D \sim 1$ – Yesterday, Today and Tomorrow?

Visible matter – ρ_B – from primordial Baryogenesis
(GUT, Lepto-B, Affleck-Dine, EW, ...)

Dark matter – ρ_D – emerges from quite a different mechanism
(Axion, Wimpino, Penta-Wimp, Wimpzilla, gravitino ...)
Cosmic coincidence of matter \((\Omega_M=\Omega_D+\Omega_B)\) and dark energy \((\Omega_\Lambda)\):

\[\frac{\Omega_M}{\Omega_\Lambda} \simeq 0.3 : \quad \rho_\Lambda \sim \text{Const.}, \quad \rho_M \sim a^{-3}.\]

- Why \(\rho_M/\rho_\Lambda \sim 1\) – just Today?

Well, if not Today, then it would be Yesterday or Tomorrow ...

– Anthropic principle or Voltairian response

"We are just lucky to live in the best time of the best world ..."

Miracle Fine Tuning between visible \((\Omega_B)\) and dark \((\Omega_D)\) matter:

\[\frac{\Omega_B}{\Omega_D} \simeq 0.2 : \quad \rho_B \sim a^{-3}, \quad \rho_D \sim a^{-3}.\]

- Why then \(\rho_B/\rho_D \sim 1\) – Yesterday, Today and Tomorrow?

Visible matter – \(\rho_B\) – from primordial Baryogenesis
(GUT, Lepto-B, Affleck-Dine, EW, ...)

Dark matter – \(\rho_D\) – emerges from quite a different mechanism
(Axion, Wimpino, Penta-Wimp, Wimpzilla, gravitino ...)

– Finest conspiracy across the Particle Physics and Cosmology?
– How Baryon Asymmetry knew about Dark Matter Nature?
Visible & dark matter

- Visible matter: \(\rho_B = n_B M_N \),
- \(M_N \approx 1 \text{ GeV} \) – nucleon mass,
- \(Y_B = n_B / s \approx 10^{-10} \) – Baryon number/entropy density ratio.
- \((\text{GUT, Lepto})\)-Baryogenesis: \(Y_B \sim (\epsilon_{CP} / g^*) \times D(k) \),
- \(\epsilon_{CP}\) – CP violation parameter,
- \(g^* \) – effective number of particle degrees of freedom at \(T = T_B \),
- \(k = \Gamma / H \) – out-of-equilibrium parameter at \(T = T_B \)
Visible & dark matter

- Visible matter: \(\rho_B = n_B M_N \),
 \(M_N \approx 1 \text{ GeV} \) – nucleon mass,
 \(Y_B = n_B / s \approx 10^{-10} \) – Baryon number/entropy density ratio.

(GUT, Lepto)-Baryogenesis:
\(Y_B \approx (\epsilon_{CP} / g^*) \times D(k) \),

- Dark matter: \(\rho_D = n_X M_X \approx 5 \rho_B \), but \(M_X = ? \), \(n_X = ? \)

 Axion: \(M_X \approx 10^{-5} \text{ eV} \);
 LSP: \(M_X \approx 1 \text{ TeV} \),
 Wimpzilla: \(M_X \approx 10^{14} \text{ GeV} \)
Cosmological evolution of Baryon and dark matter densities:
Unified origin of VM and DM?

- DM properties are similar to VM properties: $M_X \sim M_N$
- both fractions are generated by same mechanism: $n_X \sim n_B$

$$\rho_X/\rho_B = M_X n_X / M_N n_B \sim 1$$
Imagine a parallel hidden "Mirror" sector of particles, an exact duplicate of the observable sector.

[Lee & Yang ’56]

[Kobzarev, Okun, Pomeranchuk ’66]

[Blinnikov, Khlopov ’83]

[Kolb, Seckel, Turner ’86]
Mirror World

Imagine a parallel hidden "Mirror" sector of particles, an exact duplicate of the observable sector.

Two identical gauge factors, \(G \times G' \), with the identical field contents and Lagrangians: \(\mathcal{L}_{\text{tot}} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{\text{mix}} \) (exact parity under \(G \leftrightarrow G' \))

\[\text{SM} \times \text{SM}' : \quad SU(3) \times SU(2) \times U(1) \times SU(3)' \times SU(2)' \times U(1)' , \]

or \(\text{GUT} \times \text{GUT}' : \quad SU(5) \times SU(5)', \quad SO(10) \times SO(10)' , \) etc.

• Can naturally emerge in string theory context:
 O & M matter fields are localized on two parallel branes (or on brane & antibrane) while gravity propagates in bulk \((E_8 \times E_8 \) etc.)

• Mirror matter is dark for us, but we know all particle physics properties there – no unknown parameters!
Imagine a parallel hidden "Mirror" sector of particles, an exact duplicate of the observable sector.

Two identical gauge factors, $G \times G'$, with the identical field contents and Lagrangians: $\mathcal{L}_{\text{tot}} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{\text{mix}}$ (exact parity under $G \leftrightarrow G'$)

$SM \times SM': \quad SU(3) \times SU(2) \times U(1) \times SU(3)' \times SU(2)' \times U(1)'$, or $GUT \times GUT': \quad SU(5) \times SU(5)', \quad SO(10) \times SO(10)'$, etc.

- Can naturally emerge in string theory context: O & M matter fields are localized on two parallel branes (or on brane & antibrane) while gravity propagates in bulk ($E_8 \times E_8$ etc.)

- Mirror matter is dark for us, but we know all particle physics properties there – no unknown parameters!

- Spontaneously broken $G \leftrightarrow G'$: $M_W' \neq M_W$ shadow dark matter with rescaled spectrum

[Lee & Yang '56]
[Kobzarev, Okun, Pomeranchuk '66]
[Blinnikov, Khlopov '83]
[Kolb, Seckel, Turner '86]
[Z.B. & Mohapatra '95]
[Z.B., Dolgov & Mohapatra '96]
Mirror Particles and Mirror Parity

\[
\begin{align*}
SU(3) \times SU(2) \times U(1) & \quad \times \quad SU(3)' \times SU(2)' \times U(1)'
\end{align*}
\]

& Higgs (\(\phi\)) fields & & & Higgs (\(\phi'\)) fields

<table>
<thead>
<tr>
<th>quarks ((B=1/3))</th>
<th>leptons ((L=1))</th>
<th>quarks ((B'=1/3))</th>
<th>leptons ((L'=1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_L = (u, d)^t_L)</td>
<td>(l_L = (\nu, e)^t_L)</td>
<td>(q'_L = (u', d')^t_L)</td>
<td>(l'_L = (\nu', e')^t_L)</td>
</tr>
<tr>
<td>(u_R \quad d_R)</td>
<td>(e_R)</td>
<td>(u'_R \quad d'_R)</td>
<td>(e'_R)</td>
</tr>
</tbody>
</table>

| \(\tilde{q}_R = (\tilde{u}, \tilde{d})^t_R\) | \(\tilde{l}_R = (\tilde{\nu}, \tilde{e})^t_R\) | \(\tilde{q}'_R = (\tilde{u}', \tilde{d}')^t_R\) | \(\tilde{l}'_R = (\tilde{\nu}', \tilde{e}')^t_R\) |
| \(\tilde{u}_L \quad \tilde{d}_L\) | \(\tilde{e}_L\) | \(\tilde{u}'_L \quad \tilde{d}'_L\) | \(\tilde{e}'_L\) |

- \(\mathcal{L}_{\text{Yuk}} = f_L Y \tilde{f}_L \phi + \tilde{f}_R Y^* f_R \phi\)
- \(\mathcal{L}'_{\text{Yuk}} = f'_L Y' \tilde{f}'_L \phi' + \tilde{f}'_R Y'^* f'_R \phi'\)
Mirror Particles and Mirror Parity

\[\text{SU}(3) \times \text{SU}(2) \times \text{U}(1) \times \text{SU}(3)' \times \text{SU}(2)' \times \text{U}(1)' \]

& Higgs fields

<table>
<thead>
<tr>
<th>quarks (B=1/3)</th>
<th>leptons (L=1)</th>
<th>quarks (B'=1/3)</th>
<th>leptons (L'=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_L = (u, d)^t_L)</td>
<td>(l_L = (\nu, e)^t_L)</td>
<td>(q'_L = (u', d')^t_L)</td>
<td>(l'_L = (\nu', e')^t_L)</td>
</tr>
<tr>
<td>(u_R \quad d_R)</td>
<td>(e_R)</td>
<td>(u'_R \quad d'_R)</td>
<td>(e'_R)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>quarks (B=-1/3)</th>
<th>leptons (L=-1)</th>
<th>quarks (B'=-1/3)</th>
<th>leptons (L'=-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{q}_R = (\tilde{u}, \tilde{d})^t_R)</td>
<td>(\tilde{l}_R = (\tilde{\nu}, \tilde{e})^t_R)</td>
<td>(\tilde{q}'_R = (\tilde{u}', \tilde{d}')^t_R)</td>
<td>(\tilde{l}'_R = (\tilde{\nu}', \tilde{e}')^t_R)</td>
</tr>
<tr>
<td>(\tilde{u}_L \quad \tilde{d}_L)</td>
<td>(\tilde{e}_L)</td>
<td>(\tilde{u}'_L \quad \tilde{d}'_L)</td>
<td>(\tilde{e}'_L)</td>
</tr>
</tbody>
</table>

\[\mathcal{L}_{\text{Yuk}} = f_L Y \tilde{f}_L \phi + \tilde{f}_R Y^* f_R \phi \]

- D-parity: \(L \leftrightarrow L', \quad R \leftrightarrow R', \quad \phi \leftrightarrow \phi'\)

\[\mathcal{L}'_{\text{Yuk}} = f'_L Y' \tilde{f}'_L \phi' + \tilde{f}'_R Y'^* f'_R \phi' \]

- \(Y' = Y\)
Mirror Particles and Mirror Parity

\[
SU(3) \times SU(2) \times U(1) \times SU(3)' \times SU(2)' \times U(1)'
\]

\begin{align*}
gauge (g, W, Z, \gamma) & \quad \text{& Higgs (}\phi\text{) fields} \\
gauge (g', W', Z', \gamma') & \quad \text{& Higgs (}\phi'\text{) fields}
\end{align*}

<table>
<thead>
<tr>
<th>quarks (B=1/3)</th>
<th>leptons (L=1)</th>
<th></th>
<th>quarks (B'=1/3)</th>
<th>leptons (L'=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_L = (u, d)_L^t)</td>
<td>(l_L = (\nu, e)_L^t)</td>
<td></td>
<td>(q'_L = (u', d')_L^t)</td>
<td>(l'_L = (\nu', e')_L^t)</td>
</tr>
<tr>
<td>(u_R \quad d_R)</td>
<td>(e_R)</td>
<td></td>
<td>(u'_R \quad d'_R)</td>
<td>(e'_R)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>quarks (B=-1/3)</th>
<th>leptons (L=-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{q}_R = (\tilde{u}, \tilde{d})_R^t)</td>
<td>(\tilde{l}_R = (\tilde{\nu}, \tilde{e})_R^t)</td>
</tr>
<tr>
<td>(\tilde{u}_L \quad \tilde{d}_L)</td>
<td>(\tilde{e}_L)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>quarks (B'=-1/3)</th>
<th>leptons (L'=-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{q}'_R = (\tilde{u}', \tilde{d}')_R^t)</td>
<td>(\tilde{l}'_R = (\tilde{\nu}', \tilde{e}')_R^t)</td>
</tr>
<tr>
<td>(\tilde{u}'_L \quad \tilde{d}'_L)</td>
<td>(\tilde{e}'_L)</td>
</tr>
</tbody>
</table>

- **D-parity:** \(L \leftrightarrow L' \), \(R \leftrightarrow R' \), \(\phi \leftrightarrow \phi' \)
 \(\bullet \ Y' = Y \bullet \)

- **M-parity:** \(L \leftrightarrow R' \), \(R \leftrightarrow L' \), \(\phi \leftrightarrow \tilde{\phi}' \)
 \(\bullet \ Y' = Y^\dagger \bullet \)

\[
\mathcal{L}_{\text{Yuk}} = f_L Y \tilde{f}_L \phi + \tilde{f}_R Y^* f_R \phi \\
\mathcal{L}'_{\text{Yuk}} = f'_L Y' \tilde{f}'_L \phi' + \tilde{f}'_R Y'^* f'_R \phi'
\]
O & M interactions besides gravity

- Higgs-Higgs’ quartic: $\lambda (\phi^\dagger \phi)(\phi'^\dagger \phi')$; BBN: $\lambda < 10^{-8}$

... safe in SUSY:

$$W = \frac{1}{M}(\phi_u \phi_d)(\phi'_u \phi'_d)$$
O & M interactions besides gravity

- Higgs-Higgs’ quartic: \(\lambda (\phi^\dagger \phi)(\phi'^\dagger \phi') \); BBN: \(\lambda < 10^{-8} \)

 ... safe in SUSY: \(W = \frac{1}{M}(\phi_u \phi_d)(\phi'_u \phi'_d) \)

- Photon-photon’ kinetic mixing: \(\varepsilon F^\mu\nu F'^\mu\nu \); BBN: \(\varepsilon < 3 \cdot 10^{-8} \) [Glashow '86]

 ... safe in GUT: \(\mathcal{L} \sim \frac{\alpha G \Sigma \Sigma'}{4\pi M^2} G^\mu\nu G'^\mu\nu \)
O & M interactions besides gravity

- Higgs-Higgs’ quartic: \(\lambda (\phi^\dagger \phi)(\phi'^\dagger \phi') \); BBN: \(\lambda < 10^{-8} \)

 ... safe in SUSY: \(W = \frac{1}{M} (\phi_u \phi_d)(\phi'_u \phi'_d) \)

- Photon-photon’ kinetic mixing: \(\varepsilon F_{\mu\nu} F'_{\mu\nu} \); BBN: \(\varepsilon < 3 \cdot 10^{-8} \) [Glashow '86]

 ... safe in GUT: \(L \sim \frac{\alpha G \Sigma \Sigma'}{4\pi M^2} G_{\mu\nu} G'_{\mu\nu} \)

- neutrino-neutrino’ mixing: \(\frac{A}{M} ll\phi\phi + \frac{A'}{M} l'l'\phi'\phi' + \frac{D}{M} ll'\phi\phi' \) [Foot and Volkas '95]

 M-parity: \(A' = A^\ast, \quad D = D^\dagger \)

active-sterile mixing

\[
\begin{pmatrix}
\hat{m}_\nu & \hat{m}_{\nu'} \\
\hat{m}_{\nu'}^t & \hat{m}_\nu
\end{pmatrix} = \frac{1}{M} \begin{pmatrix}
Av^2 & D_{\nu\nu'} \\
D^t_{\nu\nu'} & A'_{\nu\nu'}
\end{pmatrix},
\]

- if \(v = v' \) – maximal mixing \(\theta_{\nu\nu'} = 45^\circ \)
- If \(v' > v \), \(m_{\nu'} \sim \zeta m_\nu \) and \(\theta_{\nu\nu'} \sim \zeta^{-1} \); \(\zeta = v'/v \sim 100 \); \(\zeta \sim 10^2 \): \(\sim \) keV sterile neutrinos (WDM) [Z.B. Dolgov, Mohapatra '96]

- If \(A, A' = 0 \) (\(L - L' \) conserved) naturally light Dirac neutrinos
Introduce heavy gauge singlet fermions $N_a, \ a = 1, 2, 3, \ldots$ with large Majorana mass terms $\frac{1}{2} (M_{ab} N_a N_b + M^*_{ab} \tilde{N}_a \tilde{N}_b)$,
Introduce heavy gauge singlet fermions $N_a, \ a = 1, 2, 3, \ldots$ with large Majorana mass terms $\frac{1}{2}(M_{ab}N_aN_b + M^*_{ab}\tilde{N}_a\tilde{N}_b)$.

They can equally talk with both O and M leptons

$$y_{ia}l_iN_a\phi + y'_{ia}\lambda'_iN_a\phi' + \frac{M}{2}g_{ab}N_aN_b + \text{h.c.}; \quad (y' = y^\dagger)$$
See-saw: heavy singlet neutrinos as messengers

- Introduce heavy gauge singlet fermions \(N_a, \ a = 1, 2, 3, \ldots \) with large Majorana mass terms \(\frac{1}{2} (M_{ab} N_a N_b + M_{ab}^* \tilde{N}_a \tilde{N}_b) \),

- They can equally talk with both O and M leptons
 \[
y_{ia} l_i N_a \phi + y'_{ia} l'_i N_a \phi' + \frac{M}{2} g_{ab} N_a N_b + \text{h.c.} ; \quad (y' = y^\dagger)
 \]

- After decoupling heavy neutrinos, effective operators
 \[
 \frac{A}{M} l l' \phi \phi + \frac{A'}{M} l' l' \phi' \phi' + \frac{D}{M} l l' \phi \phi'
 \]
 are generated, where
 \[
 A = yg^{-1}y^t, \quad A' = y'g^{-1}y'^t, \quad D = yg^{-1}y'^t
 \]
 generate O (active) and M (sterile) neutrino masses and mixings
See-saw: heavy singlet neutrinos as messengers

- Introduce heavy gauge singlet fermions $N_a, \ a = 1, 2, 3, \ldots$ with large Majorana mass terms $\frac{1}{2}(M_{ab}N_aN_b + M_{ab}^*\tilde{N}_a\tilde{N}_b)$,

- They can equally talk with both O and M leptons
 $$y_{ia}l_iN_a\phi + y'_{ia}\lambda_i'N_a\phi' + \frac{M}{2}g_{ab}N_aN_b + \text{h.c.}; \quad (y' = y^\dagger)$$

- After decoupling heavy neutrinos, effective operators
 $$\frac{A}{M}ll\phi\phi + \frac{A'}{M}l'l'\phi'\phi' + \frac{D}{M}ll'\phi\phi'$$
 are generated, where
 $$A = yg^{-1}y^t, \quad A' = y'g^{-1}y'^t, \quad D = yg^{-1}y'^t$$
 generate O (active) and M (sterile) neutrino masses and mixings

- They generate also processes like $l\phi \rightarrow \tilde{l}'\phi'(l'\phi') (\Delta L = 1)$ and $l\phi \rightarrow \tilde{l}\phi (\Delta L = 2)$, which

 A. violate L (and so $B - L$)
 B. violate CP
 C. should be out-of-equilibrium

 - and thus can generate $B-L \neq 0$ (→ $B \neq 0$ by sphalerons)

[Sakharov '67]
See-saw: heavy singlet neutrinos as messengers

- Introduce heavy gauge singlet fermions N_a, $a = 1, 2, 3, \ldots$ with large Majorana mass terms $\frac{1}{2}(M_{ab}N_aN_b + M^*_{ab}\tilde{N}_a\tilde{N}_b)$.

- They can equally talk with both O and M leptons
 \[y_{ia}l_iN_a\phi + y^\prime_{ia}\chi_i^lN_a\phi^\prime + \frac{M}{2}g_{ab}N_aN_b + \text{h.c.}; \quad (y^\prime = y^{\dagger}) \]

- After decoupling heavy neutrinos, effective operators
 \[\frac{A}{M}ll\phi\phi + \frac{A^\prime}{M}l^l\phi^l\phi^l + \frac{D}{M}ll^l\phi^l\phi^l \]

where $A = yg^{-1}y^t$, $A' = y'g^{-1}y'^t$, $D = yg^{-1}y'^t$

generate O (active) and M (sterile) neutrino masses and mixings

- They generate also processes like $l\phi \to \tilde{l}'\tilde{\phi}'\left(l'\phi^l\right) (\Delta L = 1)$ and $l\phi \to \tilde{l}\tilde{\phi} (\Delta L = 2)$, which

 A. violate L (and so $B - L$)
 B. violate CP
 C. should be out-of-equilibrium

- and thus can generate $B-L \neq 0$ (→ $B \neq 0$ by sphalerons)

[Sakharov '67]
At the BBN epoch, $T \sim 1$ MeV, $g_* = g_*^{SM} = 10.75$ (as contributed by the γ, e^\pm and 3 ν species)
BBN constraint

- At the BBN epoch, $T \sim 1\text{ MeV}$, $g_* = g_*^{SM} = 10.75$
 (as contributed by the γ, e^\pm and 3ν species)
- Mirror world with $T' = T$ would give the same contribution:
 $g_* = 2 \times g_*^{SM} = 21.5$ – equivalent to $\Delta N_\nu = 6.14$
BBN constraint

- At the BBN epoch, $T \sim 1$ MeV, $g_* = g_{* SM}^M = 10.75$ (as contributed by the γ, e^\pm and 3 ν species)

- Mirror world with $T' = T$ would give the same contribution: $g_* = 2 \times g_{* SM}^M = 21.5$ – equivalent to $\Delta N_{\nu} = 6.14$

- If $T' < T$, $g_* \approx g_{* SM}^M (1 + x^4)$, $x = T'/T$: equivalent to $\Delta N_{\nu} = 6.14 \cdot x^4$.

 E.g. $\Delta N_{\nu} < 0.4$ requires $x < 0.5$; for $x = 0.3$ $\Delta N_{\nu} < 0.05$.

BBN constraint

- At the BBN epoch, \(T \sim 1 \text{ MeV}, \quad g_* = g_*^{SM} = 10.75 \) (as contributed by the \(\gamma, e^\pm \) and 3 \(\nu \) species)
- Mirror world with \(T' = T \) would give the same contribution:
 \(g_* = 2 \times g_*^{SM} = 21.5 \) – equivalent to \(\Delta N_\nu = 6.14 \)
- If \(T' < T, \ g_* \approx g_*^{SM}(1 + x^4), \ x = T'/T \): equivalent to
 \(\Delta N_\nu = 6.14 \cdot x^4 \).
 E.g. \(\Delta N_\nu < 0.4 \) requires \(x < 0.5; \) for \(x = 0.3 \) \(\Delta N_\nu < 0.05. \)
- A paradigm:
 – After inflation O and M worlds are (re)heated in non-symmetric way, \(T' < T; \)
 – The processes between O and M particles are slow enough and are out-of-equilibrium
 – both sectors evolve adiabatically, without significant entropy production, and \(x = T'/T \) remains nearly constant at later epochs
CP violation in $\Delta L=1$ and $\Delta L=2$ processes

[Z.B. and L. Bento '01]
Boltzmann Eqs.

Evolution for \((B-L)\)' and \((B-L)\) \(T_R \ll M\)

\[
\frac{dn_{B-L}}{dt} + 3Hn_{B-L} + \Gamma n_{B-L} = \frac{3}{4} \Delta \sigma n_{eq}^2
\]

\[
\frac{dn'_{B-L}}{dt} + 3Hn'_{B-L} + \Gamma' n'_{B-L} = \frac{3}{4} \Delta \sigma' n_{eq}^2
\]

\(\Gamma \propto n_{eq}^4/M^2\) is the effective reaction rate of \(\Delta L' = 1\) and \(\Delta L' = 2\) processes

\[
\Gamma'/\Gamma \simeq n'_{eq}/n_{eq} \simeq x^3; \quad x = T'/T
\]

\[
\Delta \sigma' = -\Delta \sigma = \frac{3\varepsilon_{CP} S}{32\pi^2 M^4}
\]

where \(S \sim 16T^2\) is the c.m. energy square,

\[
\varepsilon_{CP} = \text{Im} \text{Tr}[(y^\dagger y)^* g^{-1}(y'^\dagger y')g^{-2}(y^\dagger y)g^{-1}]
\]

\[
Y_{BL} = D(k) \cdot Y_{BL}^{(0)}; \quad Y'_{BL} = D(kx^3) \cdot Y'_{BL}^{(0)}
\]

\[
Y_{BL}^{(0)} \approx 2 \times 10^{-3} \frac{\varepsilon_{CP} M_{Pl} T_R^3}{g_*^{3/2} M^4}.
\]
Exact M-parity: $M'_N = M_N$

\[n_B / n'_B = D(k), \quad k = \left[\Gamma_{\text{eff}} / H \right]_{T = T_R} : \quad \Omega_B / \Omega'_B \simeq 0.15 - 1 \]

Depletion factor

\[D(k) = \frac{3}{5} e^{-k} F(k) + \frac{2}{5} G(k); \quad \text{for } k \ll 1, D(k) = 1 \]

\[F(k) = \frac{1}{4k^4} \left[(2k - 1)^3 + 6k - 5 + 6e^{-2k} \right]; \quad T > T_R, \]

\[G(k) = \frac{3}{k^3} \left[2 - (k^2 + 2k + 2)e^{-k} \right]; \quad T < T_R \]

Heating:

\[\Delta N_{\nu} \simeq k / g_* \quad x = \left(k / 6g_* \right)^{1/4} < 0.2: \quad k \leq 2, \quad (\text{LSS}) \]
Broken M parity: $M'_W > M_W$?

$n'_B \simeq n_B \quad k < 1$ (robust non-equilibrium)

$M'_N/M_N \simeq (\Lambda'/\Lambda)$ changes slowly with M'_W

$m'_e/m_e \simeq M'_W/M_W$ changes fastly with M_W.

– Properties of MB’s get closer to CDM: $M'_W \sim 10$ TeV?
Redshifts

\[z'_{\text{dec}} \approx x^{-1} z_{\text{dec}} \quad x_{\text{eq}} = 0.05(\Omega_M h^2)^{-1} \approx 0.3 \]

for \(x < x_{\text{eq}} \)

\[M_J \ll M_H \]

\[\lambda_S' \sim 5x_{\text{eq}}^{5/4}(x/x_{\text{eq}})^{3/2}(\Omega_M h^2)^{-3/4} \text{ Mpc} \]
CMB & LSS power spectra

\[
\frac{\ell(\ell+1)C_{\ell}}{\ell!} \leq 1/2 \frac{\mu K}{h^2} \\
\Omega_m = 0.25, \, \omega_b = 0.023, \, h = 0.73, \, n = 0.97
\]

\[x = 0.5, \text{no CDM} \quad \cdots \cdots \]
\[x = 0.3, \text{no CDM} \quad \cdots \cdots \]
\[x = 0.2, \text{no CDM} \quad \cdots \cdots \]
LSS power spectra

\begin{align*}
\Omega_M &= 0.30, \omega_b = 0.001, h = 0.70, n = 1.00 \\
\Omega_M &= 0.30, \omega_b = 0.02, h = 0.70, n = 1.00 \\
\Omega_M &= 0.30, \omega_b = 0.02, h = 0.70, x = 0.2, \text{no CDM}, n = 1.00 \\
\Omega_M &= 0.30, \omega_b = 0.02, h = 0.70, x = 0.1, \text{no CDM}, n = 1.00 \\
\Omega_M &= 0.30, \omega_b = 0.02, h = 0.70, x = 0.2, \omega_b' = \omega_{CDM}, n = 1.00
\end{align*}
Neutron - Mirror neutron oscillation

B-genesis is possible via

\[
\begin{align*}
\Phi & \quad \Phi' \\
M & \quad M \\
N & \quad N' \\
l & \quad l' \\
φ & \quad φ' \\
\end{align*}
\]

\[
\begin{align*}
d & \quad d' \\
S & \quad S' \\
N' & \quad N \\
u & \quad u' \\
d & \quad d' \\
u & \quad u' \\
\end{align*}
\]

\[
\frac{1}{M^5} (udd)(u'd'd') + \frac{1}{M^5} (qqd)(q'q'd') + \text{h.c.} \rightarrow \delta m (\bar{n}n' + \bar{n}'n)
\]

\[
\delta m \sim \left(\frac{10 \text{ TeV}}{M}\right)^5 \times 10^{-15} \text{ eV} \quad !!! \quad \delta m^{-1} = \tau_{\text{osc}} \sim 1 \text{ sec is allowed} \quad !!.
\]

Anomalous Neutron Loses, Lifetime measurements, UHECR, ...