Gamma Ray Bursts as Cosmological Probes

Instituto Superior Técnico

Departamento de Física

(http://alfa.ist.utl.pt/~orfeu/homeorfeu.html)

International Workshop
The Dark Side of the Universe
20-24 June, 2006, Madrid, Spain

O. B. & P.T. Silva

Mon. Not. R. Astron. Soc. 365 (2006) 1149

Overview

- Cosmological models under study
- GRBs as standard candles
- Results
- Outlook

Cosmological Models

Generalized Chaplygin Gas model

Generalized Chaplygin Gas (GCG)

$$p = -\frac{A}{\rho^{\alpha}}$$

[Bento, O.B., Sen, 2002-2004]

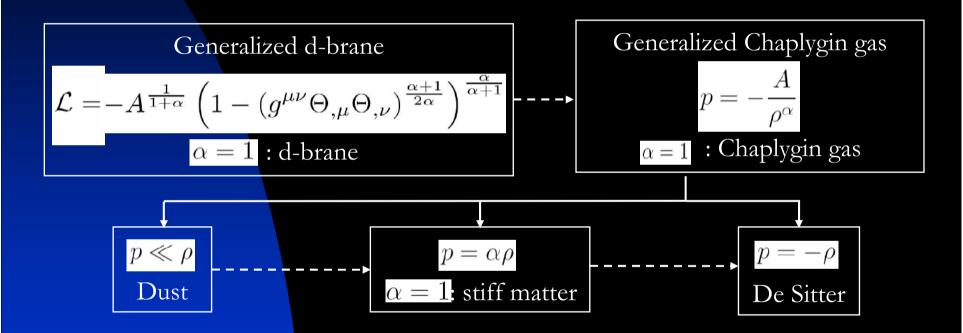
(α =1 corresponds to the Chaplygin gas)

Has many interesting theoretical features. Unlike Q/K-Essence, the (G)CG has a (fair) good theoretical base.

- Dual behaviour:
 - Dark matter (DM) at early times and dark energy (DE) (cosmological constant like) at late times.
- The perturbed GCG accounts for the CDM present in galaxies and that is necessary for structure formation.
- GCG unifies DM and DE into one single component.

Generalized Chaplygin gas model

Unified model for Dark Energy and Dark Matter



[Kamenschik, Moschella, Pasquier 2001]
[Bilic, Tupper, Viollier 2002; Bento, O.B., Sen 2002]

Model 1

A massive complex scalar field Φ : Writing in terms of its mass, *m*:

$$\mathcal{L} = g^{\mu\nu} \Phi^*_{,\mu} \Phi_{,\nu} - V(|\Phi|^2)$$

$$\Phi = \left(\frac{\phi}{\sqrt{2}m}\right) \exp(-im\theta)$$

Scale of inhomogeneities arises from the assumption: $\phi_{\mu} << m \phi$

"Thomas-Fermi" approximation:

$$\mathcal{L}_{TF} = \frac{\phi^2}{2} g^{\mu\nu} \theta_{,\mu} \theta_{,\nu} - V(\phi^2/2)$$

• Equations of motion:

$$g^{\mu\nu}\theta_{,\mu}\theta_{,\nu} = V'(\phi^2/2)$$

$$g^{\mu\nu}\theta_{,\mu}\theta_{,\nu} = V'(\phi^2/2)$$
 $(\phi^2\sqrt{-g}g^{\mu\nu}\theta_{,\nu})_{,\mu} = 0$

where V'(x) = dV/dx. Phase θ can be regarded as a velocity field whether V' > 0:

so that, on the mass shell, $U^{\mu}U_{\mu}=1$.

$$U^{\mu} = \frac{g^{\mu\nu}\theta_{,\nu}}{\sqrt{V'}}$$

Energy-momentum tensor takes the form of a perfect fluid:

$$\rho = \frac{\phi^2}{2}V' + V$$

$$p = \frac{\phi^2}{2}V' - V$$

Covariant conservation of the energy-momentum tensor: $\dot{\rho} + 3H(p + \rho) = 0$

$$\dot{\rho} + 3H(p + \rho) = 0$$

leads for the generalized Chaplygin gas:

$$\rho = \left(A + \frac{B}{a^{3(1+\alpha)}}\right)^{\frac{1}{1+\alpha}}$$

Furthermore,

$$d \ln \phi^2 = \frac{d(\rho - p)}{\rho + p}$$

which, together with the Eq. of state implies that: $\phi^2(\rho) = \rho^{\alpha}(\rho^{1+\alpha} - A)^{\frac{1-\alpha}{1+\alpha}}$

$$\phi^{2}(\rho) = \rho^{\alpha} (\rho^{1+\alpha} - A)^{\frac{1-\alpha}{1+\alpha}}$$

Generalized Born-Infeld theory:

$$\mathcal{L}_{GBI} = -A^{\frac{1}{1+lpha}} \left[1 - (g^{\mu
u}\theta_{,\mu}\theta_{,
u})^{\frac{1+lpha}{2lpha}} \right]^{\frac{lpha}{1+lpha}}$$

Model 2

Real scalar field ϕ :

$$L = \partial_{\mu} \phi \ \partial^{\mu} \phi - V(\phi)$$

$$V(\phi) = V_0 \exp[3(\alpha + 1)\phi] \left[\cosh(\frac{m\phi}{2})^{2/\alpha + 1} + \cosh(\frac{m\phi}{2})^{-2\alpha/\alpha + 1}\right]$$

where

$$m = \alpha + 1$$
.

Tests of the Dark Energy - Dark Matter Unification

CMBR Constraints

[Bento, O. B., Sen 2003, 2004; Amendola et al. 2004]

SNe la

[O. B., Sen, Sen, Silva 2004; Bento, O.B., Santos, Sen 2005]

Gravitational Lensing

[Silva, O. B. 2003]

Structure Formation

[Sandvik, Tegmark, Zaldarriaga, Waga 2004; Bento, O. B., Sen 2004; Bilic, Tupper, Viollier 2005; ...]

Cosmic topology

[Bento, O. B., Rebouças, Silva 2006]

Inflation

[O. B., Duvvuri 2006]

Background tests:

$$\alpha \leq 0.6$$

$$0.65 \le A_s \le 0.85$$

$$A_S = \frac{A}{\rho_{Ch,0}^{1+\alpha}}$$

Aleviates the coincidence problem, since the accelerated expansion starts after perturbations become non-linear.

Degenerate with phantom XCDM models for z<2.

Fiducial GCG

- Flat GCG parameters
- Disregard baryons, Ω_{ch} =1.0
- Fiducial model: α =1, A_s=0.7

$$1-\sigma$$
 SNe Ia
$$A_s = 0$$

Fiducial XCDM

• CDM: $\Omega_{\rm m}$ =0.45

■ Dark Energy: Ω_X =0.55

■ DE Equation of state: ω =-1.45

Degenerate with the GCG fiducial model for z<2</p>

Cosmological Tests

The m-z test

■ A SNe Ia observed at redshift *z*, with absolute magnitude *M*, will be seen on Earth with an apparent magnitude, *m*, given by

$$m(z, H_0, \Theta) = M - 5 \log d_L(z, H_0, \Theta) + 25$$

Measuring m as a function of redshift, we may fit models to the data using a simple χ² test, and constrain the GCG parameter space

$$\chi^{2}(\mathbf{\Theta}) = \sum_{z=0}^{z_{max}} \left[\frac{m_{obs} - m(z, \mathbf{M}, \mathbf{\Theta})}{\sigma_{\mu}(z)} \right]^{2}$$

Silva, O.B., Ap. J. 599 (2003) 829 O.B., Sen, Sen, Silva, M.N.R.A.S. 353 (2004) 329 Bento, O.B., Sen, Santos, Phys. Rev. D71 (2005) 063501 Bento, O.B., Rebouças, Silva, Phys. Rev. D73 (2006) 043504

Gamma-ray what?

- GRBs are very energetic events that extend to high redshifts (SNe Ia can only be detected for z<2).</p>
- GRBs are not subjected to dust extinction like SNe Ia.
- GRBs are not standard candles, but their absolute energy output or luminosity may be estimated.

Some GRB Observables

- Variability: Measures the complexity of the GRB spectrum.
- Time Lag: Measures the time offset between high and low energy GRB photons.
- Jet time break: Break in afterglow (AG) light curve

Peak energy: Let F_v denote the observed photon frequency spectrum. In the (v - vF_v) plot there is a maximum. The energy corresponding to this maximum is defined as the peak energy,
F = hv

GRBs & Cosmology

ν peak

Other relevant quantities:

- Isotropic equivalent luminosity, L_{iso}: Inferred luminosity assuming that the energy release is isotropic. (proportional to d_L²).
- Isotropic equivalent energy, E_{iso}: Inferred energy release assuming isotropy (also proportional to d₁²).

- Beaming corrected energy, E_{γ} : Estimated energy release assuming collimation into a beam with angular aperture θ, E_{γ} = E_{iso} (1-cosθ).
- Assuming a circum-burst medium with constant density, n, and that a fraction η_{γ} of the fireball kinetic energy is released in the prompt γ -ray phase, then

$$\theta = 0.161 \left(\frac{t_{jet}}{1+z}\right)^{3/8} \left(\frac{n\eta_{\gamma}}{E_{iso.52}}\right)^{1/8}$$

GRBs as Standard Candles

Time lag is correlated with L_{iso}:

$$L_{iso} \propto \tau^{\beta_{\tau}}$$
 , $\beta_{\tau} = -1.27$

Variability is correlated with L_{iso}:

$$L_{iso} \propto V^{\beta_V}$$
 , $\beta_{\rm v} = 1.57$

 \mathbf{E}_{γ} is correlated with \mathbf{E}_{p} (Ghirlanda relation):

$$E_{\gamma} \propto [(1+z)E_P]^a$$
, $a = 1.4$

Circularity Problem

SNe Ia: Use low-redshift SNe Ia to calibrate luminosity estimators, and use high-redshift ones to study cosmology.

GRBs: No low-redshift GRBs to calibrate estimators!

Possible solutions

 Consider calibration as a free parameter, and use statistical treatment to study cosmology through the choice of a calibration that reduces the scatter in the Hubble diagram, etc.

Our suggestion:

- Use SNe Ia to measure d_L for z<1.5.</p>
- Use GRBs correlations to generate a low-redshift population and calibrate luminosity estimators.
- Use high-redshift GRBs for cosmological studies.

Pros and Cons

Less free parameters, but no data points for z<1.5.</p>

Direct test for events with z>1.5.

Using V and τ_{lag} in Cosmology

- Measure V and τ_{lag}
- Using (V-L_{iso}) and $(\tau_{lag}$ -L_{iso}) relations, find two estimates of L_{iso}.
- Combine both estimates as a weighted average
- Calculate luminosity distance
- Consider Gaussian error propagation

Testing Our Method

Testing the Calibration Procedure

- Consider fiducial V-L_{iso} and τ_{lag}-L_{iso} relations.
- Generate a mock low-redshift GRB population to account for the intrinsic statistical scatter around the fiducial relations.
- Fit the relations to the generated sample.

Calibration Procedure

Fid. Values				
$\beta_{\sf V}$	σ_{logV}	$eta_{ au}$	$\sigma_{log_{T}}$	
1.57	0.20	-1.27	0.35	

GRB Population			
N _{total}	N(z<1.5)		
120	40		
500	100		
1000	200		

Results

Uncertainty in distance modulus for various calibrations

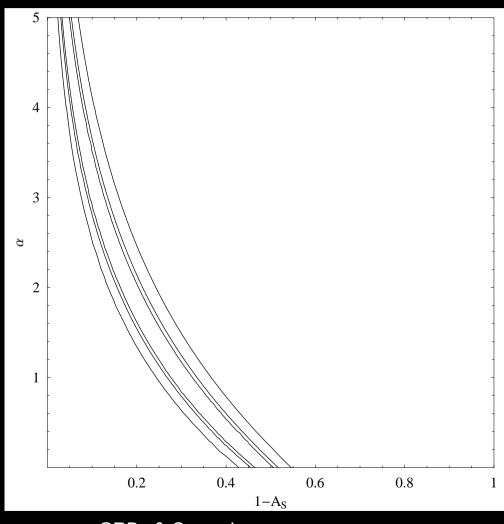
N(z<1.5)	σ_{μ}
40	0.68
100	0.66
200	0.66

Calibration with 40 low-redshift GRBs is adequate

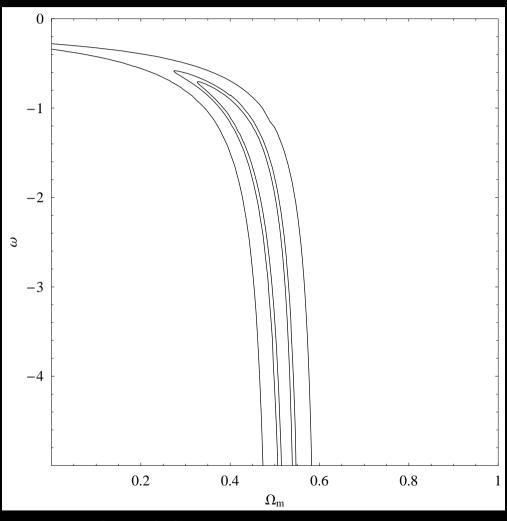
The Cosmological Test

- Consider larger high-redshift samples to overcome the large statistical uncertainty.
- We consider that the calibration was done using 100 z<1.5 GRBs.
- Consider N(z>1.5)=(150;500;1000).

GCG Model



XCDM Model



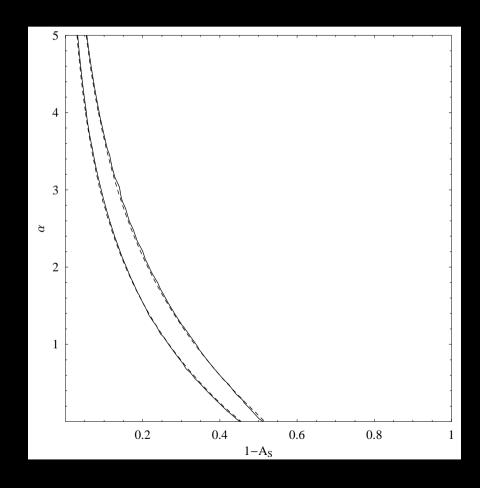
Comments

- Increasing the GRB sample improves the results, but the test remains inadequate to study the GCG model.
- A sample of N(z>1.5)≥500 will constrain the amount of matter in XCDM models, independently of the nature of DE.

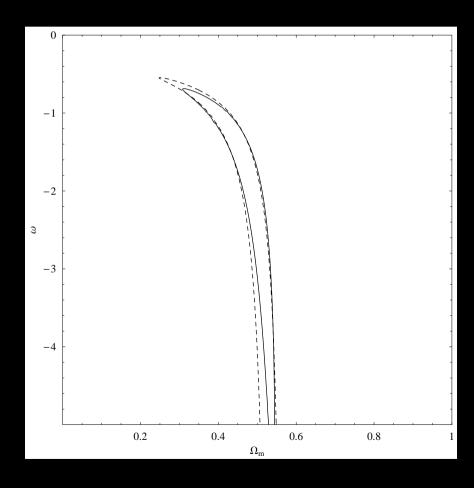
What about z<1.5?

- DE is known to influence the dynamics only at z<1. Does a lowredshift sample improve results?
- Is a high-redshift sample really relevant?
- Consider a sample made up of 400 high-z and 100 low-z GRBs.

GCG model



XCDM model



Comments

- For GCG models, no effect.
- For XCDM models, an upper limit on the DE equation of state is imposed, without much effect on the allowed matter content.
- Better precision might improve the results.

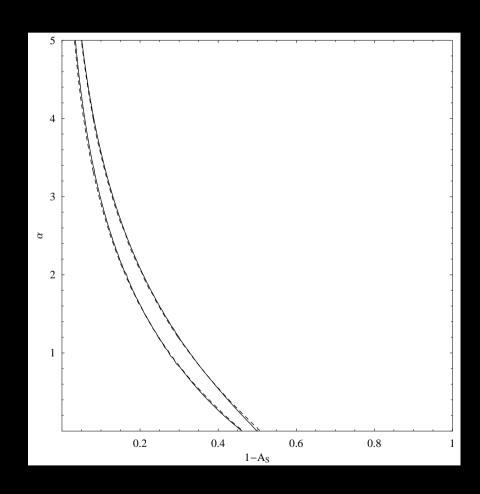
Ghirlanda Relation

- The correlations previously considered are affected by the large statistical uncertainty, and are not very precise.
- A much tighter correlation was found by Ghirlanda et al. (2004) which relates E_{γ} to $E_{\rm p}$.
- Uncertainty in µ around 0.5 mag.

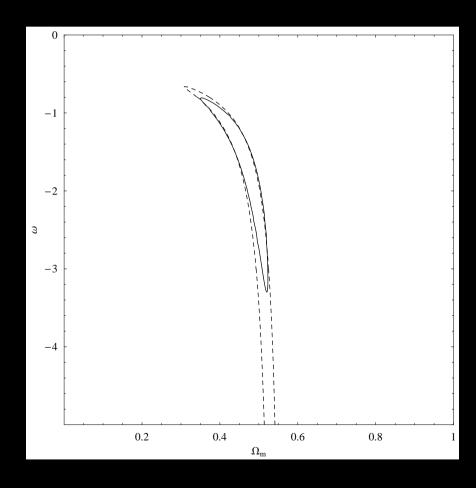
Error Budget

	Rel. Error	% of $(\sigma_{dL})^2$
$\sigma_{\scriptscriptstyle S_{_{\gamma}}}$	10%	5%
$\sigma_{\scriptscriptstyle k}$	5%	1%
$\sigma_{\scriptscriptstyle C}$	8%	5%
σ_{a}	5%	5%
$oldsymbol{\sigma}_{E_p}$	17%	52%
$\sigma_{_n}$	50%	14%
$oldsymbol{\sigma}_{t_{jet}}$	20%	16%

GCG Model



XCDM Model



GCG models features:

The confidence regions follow the curve

$$(1 - A_s)^{1/(1+\alpha)} = const$$

This happens because GRBs measure the quantity that dominates at a probed redshift and:

$$H_{ch}(z >> 0) = \Omega_{ch} (1 - A_s)^{1/(1+\alpha)} (1+z)^3$$

- Improvement in precision might allow obtaining better results, but high redshifts will be always problematic.
- Moreover, the transition from matter dominated to vacuum dominated expansion is faster than for XCDM models.

Comments on XCDM Models

- High redshift GRBs are good tools to constrain the total amount of matter, but rather poor ones to probe DE.
- Information from the z<1.5 range is crucial to get insights on the nature of DE, but it does not constrain the amount of DM.

- However, both redshift ranges are important as no limits on the amount of matter can be obtained from z<1.5 probes alone.</p>
- Thus, it is fair to conclude that GRBs offer a new window to probe DM and are complementary to constraints arising from LSS studies.

SNe la GRBs X

- GRBs are "easily" detected at z>2
- Systematic effects still to be understood (not considered so far).

- No detection is expected beyond z>2
- Systematics under control

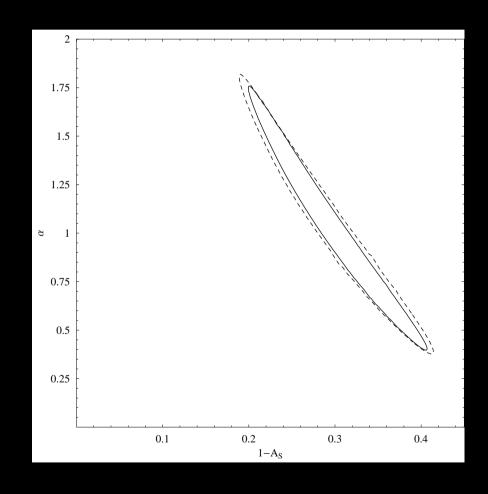
σ_μ≈0.5

 $\sigma_{\rm u} \approx 0.14$ or less

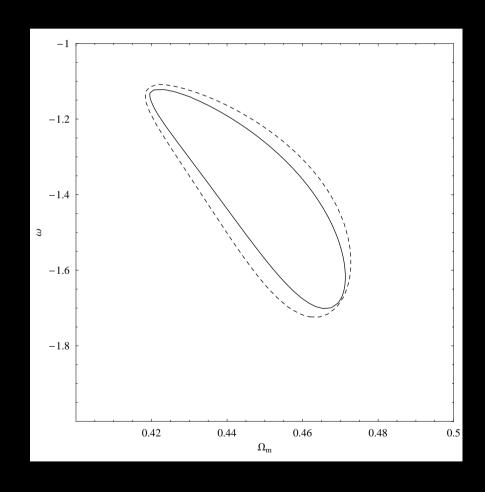
GRBs and SNe la

- When considering future GRB experiments, one can use the SNAP specifications for SNe Ia.
- Build a χ^2 estimator for both SNe Ia and GRBs, and compute the corresponding confidence regions.
- Dashed line corresponds to SNe Ia, while the solid one to SNe Ia + GRBs.

GCG Models



XCDM Models



So, can GRBs help?

- The impact of GRBs as cosmological probes depends on the cosmological model under investigation.
- Until SNAP or another large SNe la survey start yielding results, GRBs may help in tightning constraints on DE and DM models.

Can GRBs Help??

- However, even after SNAP, GRBs might be used as a consistency check.
- Adding GRBs data to SNe Ia data may not affect results significantly, unless new and more precise GRB luminosity estimators become available.

This is complicated matter...

- Selection effects
- Gravitational lensing
- Lack of a physical model for GRBs
- Unverified assumptions