Halos and voids in a multifractal model of the dark matter distribution

José Gaite

Instituto de Matemáticas y Física Fundamental, CSIC, Madrid (Spain)

PLAN OF THE TALK

- 1. Cold dark matter structure in the adhesion model
- 2. Random fractals
- 3. Scaling of voids
- 4. Analysis of the SDSS catalogue
- 5. Multifractals: halos and voids
- 6. Conclusions.

CDM structure in the adhesion model

Newtonian equations of motion in co-moving coordinates (peculiar velocity $m{u} = m{v} - H m{r}$):

$$\frac{d\boldsymbol{u}}{dt} + H\boldsymbol{u} = \boldsymbol{g}_T - \boldsymbol{g}_b \equiv \boldsymbol{g}.$$

No initial vorticity \to Zeldovich approx.: prolong the linear solution $\boldsymbol{x}(t,\boldsymbol{x}_0) = \boldsymbol{x}_0 + b(t)\,\boldsymbol{g}(\boldsymbol{x}_0).$ $\tau := b(t) \Rightarrow$ free motion with velocity $\boldsymbol{g}(\boldsymbol{x}_0)$

Singularities when lines cross → caustics.

CDM structure in the adhesion model

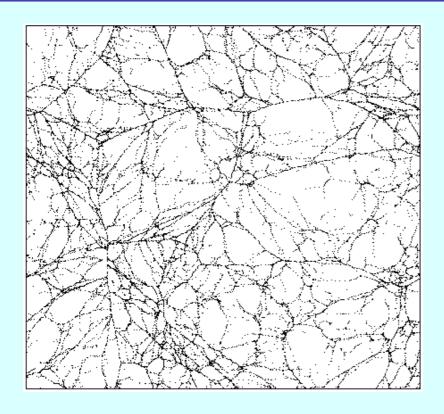
- In caustics particles adhere to each other → viscosity.
- Burgers equation (compressible turbulence):

$$\frac{d\widetilde{\boldsymbol{u}}}{d\tau} = \frac{\partial \widetilde{\boldsymbol{u}}}{\partial \tau} + \widetilde{\boldsymbol{u}} \cdot \nabla \widetilde{\boldsymbol{u}} = \nu \nabla^2 \widetilde{\boldsymbol{u}}, \quad \nu \to 0,$$
$$\nabla \times \widetilde{\boldsymbol{u}} = 0.$$

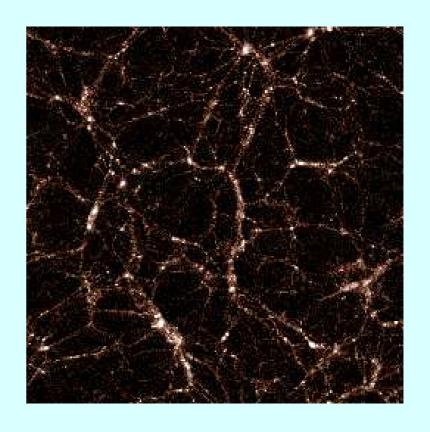
Stabilization of caustics (pancakes, filaments, clusters).

■ Random initial conditions → self-similar distribution of caustics: "cosmic web" → multifractal features (Vergassola et al '94, Aurell et al '97).

Simulations



Burgers eq. with random initial conditions (Vergassola, Dubrulle, Frisch & Noullez)



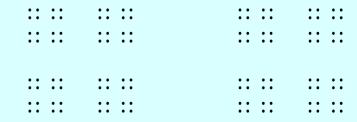
N-body cosmological simulation of Λ -CDM evolution (GIF2)

Fractals

Self-similar fractals

- Cluster hierarchy
- lacksquare Power-law mass $\propto L^D$, with

$$D = 2 \log 2 / \log 3 = 1.26$$



Cantor set (2d)

Random fractals

Number function

$$N(r) = B r^D \Rightarrow$$

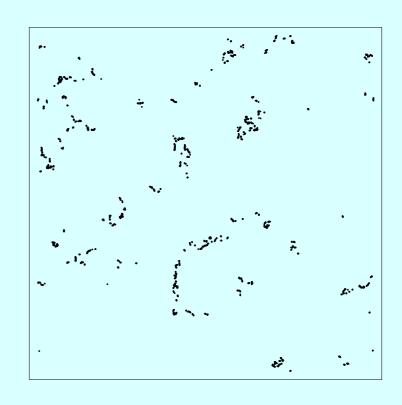
$$\Gamma(r) = \frac{1}{4\pi r^2} \frac{dN(r)}{dr} = \frac{BD}{4\pi} r^{D-3}$$

Transition to homogeneity at r_0 :

$$\Gamma = \langle \varrho \rangle (1 + \xi).$$

Power-law 2-point correlator:

$$\xi = (\frac{r_0}{r})^{\gamma} >> 1, \ \gamma = D - 3.$$



Random fractal with

$$D = 0.8$$
.

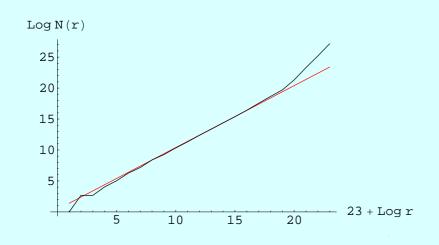
Note clusters and voids

Fractal voids

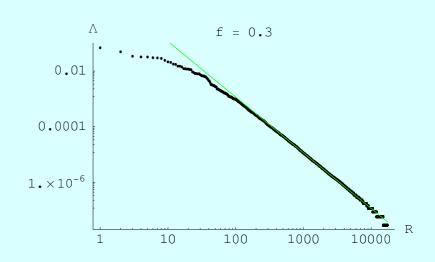
Void of size Λ in a fractal \rightarrow power law

$$N(\Lambda>\lambda)\propto \lambda^{-D/3} \Leftrightarrow \Lambda(R)\propto R^{-z}, \; z=\frac{3}{D}$$
, Zipf's law

Transition to homogeneity ⇒ flattening of the Zipf law

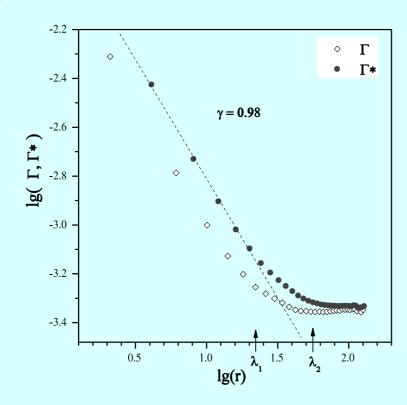


N(r) for D=1 fractal in two dimensions

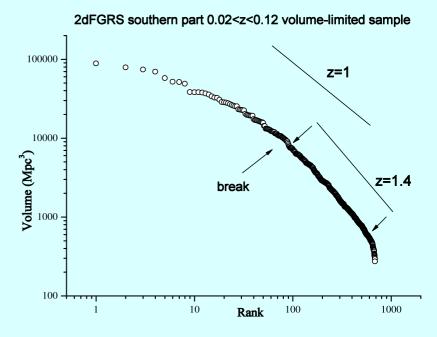


Zipf's law for voids with
$$z=2/D$$

Scaling of galaxy clusters and voids



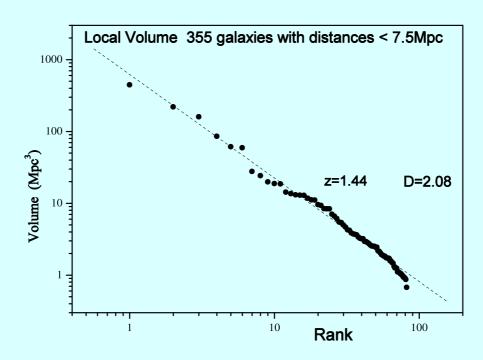
 $\Gamma(r)$ of SDSS VL sample. $r_0 \simeq 15$ Mpc (Tikhonov). Slope $\gamma \Rightarrow D \simeq 2$



The Zipf law for a 2dF VL sample (Tikhonov). Slope $z \Rightarrow D \simeq 2$

Scaling of galaxy clusters and voids

Rank ordering of local voids (Karechentsev):

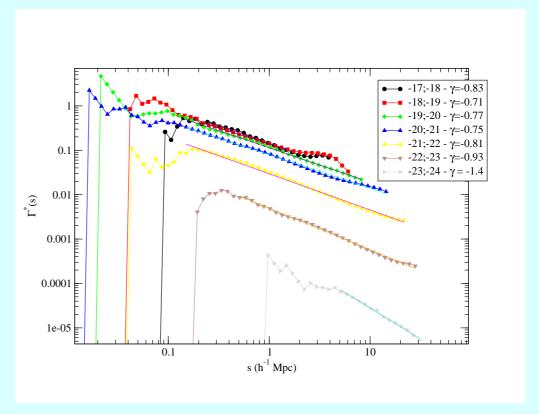


Slope $\gamma \Rightarrow D \simeq 2$. No transition to homogeneity

Analysis of the SDSS catalogue

Correlation functions of galaxies from the SDSS catalogue according to their luminosity (SSDS Data Release 3, with 374,767 galaxies).

Selection of 7 *volumen limited* samples (150,067 galaxies altogether) with slope fitting \Rightarrow slope changes



MULTIFRACTALS

- Scale invariance ⇒ fractals
- Mass distributed irregularly + scale invariance ⇒ multifractals
- Mass concentrations

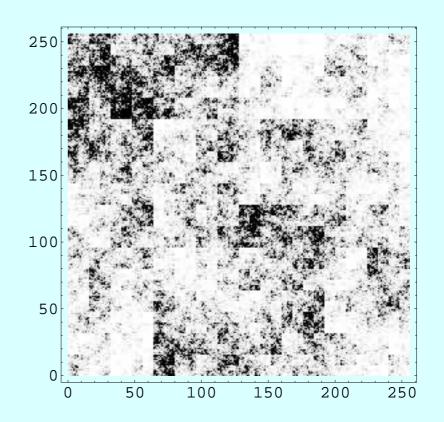
$$m[B(\boldsymbol{x},r)] \sim r^{\alpha(\boldsymbol{x})}$$

■ Multifractal spectrum $f(\alpha)$ is the function that gives the fractal dimension of the set of points with exponent α .

Monofractal: constant $\alpha = f(\alpha)$.

Example: multinomial MF

Multinomial multifractals: the unit square is divided into (4) cells, the unit mass distributed among cells ($\{p_i\}$), and the process iterated.



Random multinomial measure with distribution $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{12}\}.$

MASS CONCENTRATIONS: HALOS

Mass concentrations of size ℓ with singular power-law profile

$$\rho(r) \propto r^{-\beta}, \ \beta = 3 - \alpha > 0$$
).

Natural value for ℓ is the lower cutoff to scaling. In N-body simulations, the larger of:

- (i) The linear size of the volume per particle.
- (ii) The gravitational softening length.

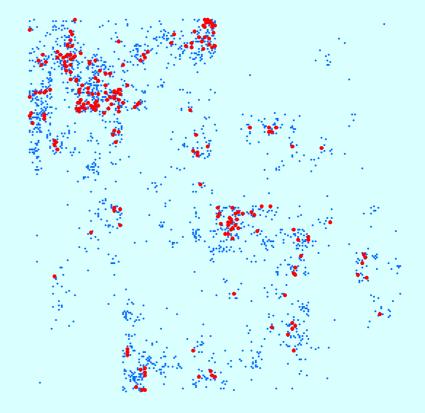
We identify mass concentrations with equal-size halos →

Halo mass-function:
$$N(m) \sim \ell^{-f(\alpha)}$$
, $\alpha = \log m / \log \ell$.

Multinomial bifractal

A bifractal can be extracted: select $\{\alpha_1, \alpha_2\} \Leftrightarrow \{m_1, m_2\}$.

Multifractal models support halo populations with different levels of clustering.



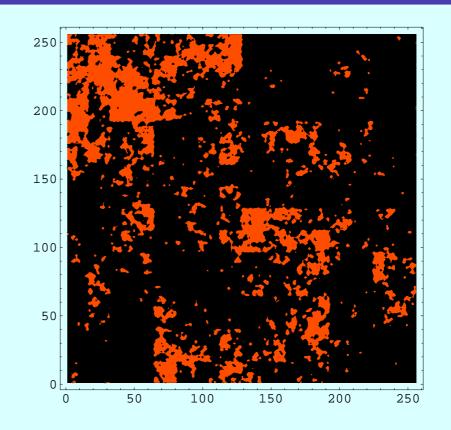
Note voids (may be non-empty)

Two populations in a multinomial multifractal.

MASS DEPLETIONS: VOIDS

Voids have regular power-law profile $\rho(r) \propto r^{-\beta}$ ($\beta = 3 - \alpha$). If $\alpha > 3 \Rightarrow \rho(0) = 0$.

Boundaries of voids: points with $\alpha=3\Rightarrow \rho(0)>0$ and finite. Not regular but fractal surfaces with D=f(3)>2.



Fractal boundary of voids in multinomial MF: f(2) = 1.93.

BIASING AND VOIDS

Biasing: peculiar distribution of certain set of objects with respect to the total DM distribution.

Bias from linear theory:

$$\frac{\delta \rho_g}{\rho_q} = b \frac{\delta \rho}{\rho} \Rightarrow \xi_{gg}(r) = b^2 \xi(r), \ b > 1.$$

Constant b bias in the nonlinear regime \Rightarrow similar voids for every population \rightarrow false in MF.

- Voids not empty but harbor faint galaxies

 → galaxy formation (Peebles, 2001).
- Distribution of dark matter inside voids (Gottlöber et al, 2003).

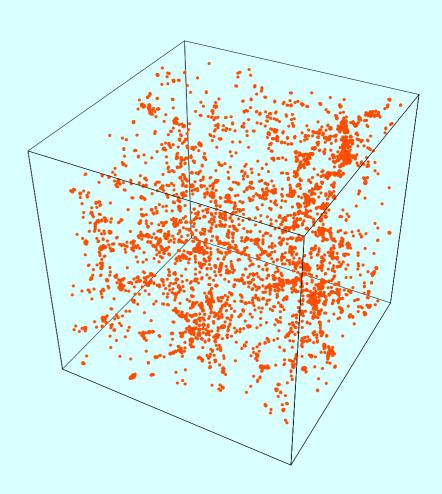
MULTIFRACTALITY IN N-BODY SIMULATIONS

z=0 positions in Virgo Λ -CDM GIF2 simulation: 400^3 particles in a volume of $(110~h^{-1}~{\rm Mpc})^3 \Rightarrow {\rm particle}$ ticle mass is $0.173~10^{10}~h^{-1}M_{\odot}$.

Statistics by *counts-in-cells*:

$$M_q(\ell) = \sum_{m=1}^{\infty} N(m) m^q.$$

Halos:
$$\ell_H = 256^{-1} > 400^{-1}$$
 $(\ell_H = 0.43 \ h^{-1} \ \text{Mpc}).$



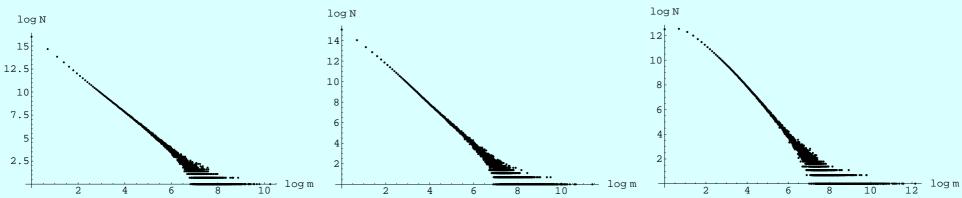
Distribution of 5515 haloes (cutoff 1000)

Mass-function variation with ℓ

If MF scaling holds \Rightarrow stable MF spectrum.

For $\ell > \ell_H$ we expect a stable MF spectrum. How does it change for

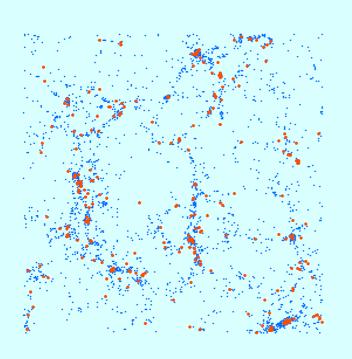
$$\ell < \ell_H$$
?

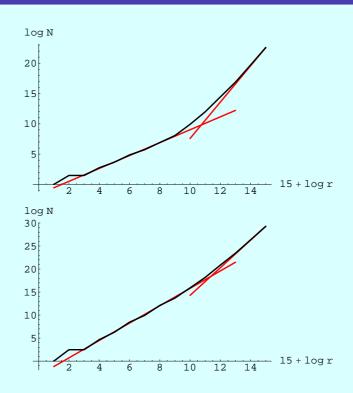


Log-log plots of number of halos N(m) for $\ell=512^{-1}$ (left), 256^{-1} (middle), and 128^{-1} (right).

Power-law (Press-Schechter) for $\ell < \ell_H$.

MF AS FRACTAL DISTRIBUTIONS OF HALOS



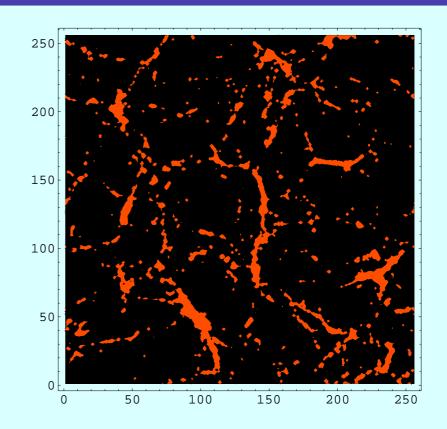


- GIF2 heavy haloes with 750 to 1000 particles (red);
- GIF2 light haloes with 100 to 150 particles (blue).

Number function $N[B(\boldsymbol{x},r)]\sim r^D$: fractal dimensions D=1.1 and D=1.9. Transition to homogeneity starts at $\simeq 14~h^{-1}$ Mpc.

Voids in the GIF2 simulation

MF spectrum shows that $f(3) \simeq 2.9 \Rightarrow$ boundary is a fractal surface with large dimension.



Fractal boundary of voids in a GIF2 slice

SUMMARY and CONCLUSIONS

- Adhesion model → self-similar cosmic web (multifractal)
- lacksquare Observations of galaxies o scaling with variable γ
- Multifractals: most general scaling mass distributions, support halos (concentrations) and voids (depletions).
- \blacksquare MF spectrum \rightarrow halo mass function.
- Halos have nonlinear bias
- GIF2: fractal populations of haloes \rightarrow good scaling.