KIMS : Dark Matter Search Experiment in Korea

Jik Lee
Seoul National University

For the KIMS Collaboration

DSU2006, Madrid
KIMS
Korea Invisible Mass Search

H.S.Lee, S.E.Lee, J. Lee, S.S.Myung, H.Y.Yang
Seoul National University

Y.D.Kim, J.I. Lee, U.G. Kang
Sejong University

H.J.Kim, S.C. Yang, J.H. So
Kyungpook National University

M.J.Hwang, Y.J.Kwon
Yonsei University

I.S.Hahn, I.H.Park
Ewha Womans University

M.H.Lee, E.S.Seo
Univ. of Maryland

J.Li
Institute of High Energy Physics

J.J.Zhu, D. He, Q.Yue
Tsinghua University

WIMP

SUSY model with R-parity conservation
Neutralino : stable LSP
weak interactions scale annihilation cross section
proper relic density for dark matter

⇒ Excellent CDM candidate

Neutralino: super-partner of neutral gauge and Higgs bosons

\[
\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W} + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0
\]
Direct WIMP Search

Signature: WIMP-nucleus elastic scattering

→ Signal by recoiled nucleus

\[L = f_q (\bar{\chi}\chi) \cdot (\bar{q}q) + d_q (\bar{\chi}\gamma^\mu \gamma^5 \chi) \cdot (\bar{q}\gamma_\mu \gamma^5 q) + \]

scalar interaction

spin-dep. interaction

\[\sigma_{\text{scalar}} = \frac{4}{\pi} m_r^2 \left[Z f_p + (A - Z) f_n \right]^2 \]

\[\sigma_{\text{spin}} = \frac{32}{\pi} G_F^2 m_r^2 \Lambda^2 J(J+1) \]

\[\propto A^2 \]

\[\Lambda \equiv \frac{1}{J} (a_p < S_p > + a_n < S_n >) \]
SNU Seoul
3.5 hours by car
SNU
Yangyang
Yangyang Underground Laboratory

Korea Middleland Power Co.
Yangyang Pumped Storage Power Plant

Minimum depth: 700 m / Access to the lab by car (~2km)
CsI(Tl) Crystal

Advantage

- High light yield ~60,000/MeV
- Pulse shape discrimination
- Moderate background rejection
- Easy fabrication and handling
- Easy to get large mass with an affordable cost
- Good for AM study

Disadvantages

- Emission spectra does not match with normal bi-alkali PMT
 => Effectively reduce light yield
- 137Cs($\tau_{1/2}$ ~30y), 134Cs($\tau_{1/2}$ ~2y) may be problematic

<table>
<thead>
<tr>
<th></th>
<th>CsI(Tl)</th>
<th>NaI(Tl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photons/MeV</td>
<td>~60,000</td>
<td>~40,000</td>
</tr>
<tr>
<td>Density(g/cm³)</td>
<td>4.53</td>
<td>3.67</td>
</tr>
<tr>
<td>Decay Time(ns)</td>
<td>~1050</td>
<td>~230</td>
</tr>
<tr>
<td>Peak emission(nm)</td>
<td>550</td>
<td>415</td>
</tr>
<tr>
<td>Hygroscopicity</td>
<td>slight</td>
<td>strong</td>
</tr>
</tbody>
</table>
Pulse shape discrimination of gamma background

\[
\langle t \rangle = \frac{\sum A_i t_i}{\sum A_i}
\]
1. External gamma
 - Isotopes in surrounding materials (Rock)
 - Decay chain of ^{238}U and ^{232}Th
 - Isotopes (K^{40}, ...)
 - Rn^{222} in air
 - Shielding structure made of pure and high Z materials
 - Partially or fully distinguishable from WIMP signal by PSD
 - N_2 flowing to remove air contaminated by Rn^{222}

2. Neutron background
 - Indistinguishable from WIMP signal (Nuclear recoil)
 - (α, n) reaction
 - Nuclear fission
 - Induced by cosmic muon ($E_{\text{mean}} \sim 230$ GeV)
 - possible to veto with muon detector
 - Neutron moderator made of material with High Hydrogen density
 - Veto system using Muon detector
KIMS

Neutron shield / Muon det.

Lead shield

Polyethylene

Copper shield

CsI(Tl) crystal
Muon Detector

- 4π coverage muon detector: 28 channels
- Liquid Scintillator (5%) + Mineral Oil (95%) = 7 ton
- Measured Muon flux = $2.7 \times 10^{-7} \text{ /cm}^2\text{/s}$
- Position resolution: $\sigma_{x,y} \sim 8 \text{ cm}$
- Reconstructed muon tracks with hit information
- Muon veto efficiency $\sim 99.9\%$
Neutron Monitoring Detector

1 liter BC501A liquid scintillator
n/g separation using PSD
$E_{vis} > 300$ keV

2722 events for 67.41 days
Rate: 33.65 counts/liter/day
Muon induced neutrons

2 events of Muon induced neutron during 67.4 days
~ 0.03 counts/day/liter
Neutron Monitoring Detector

214Bi β-decay \rightarrow 214Po α-decay

Gamma-Alpha Coincidence

Lifetime = 0.155 +/- 0.008 ms
Lifetime of 214Po = 0.1643 ms
471 coincidence events and 5 background events

222Rn α-decay \rightarrow 218Po α-decay

Energy = 523.5 +/- 2.2 keV
Among 605 events
553 events of alpha's from 222Rn 5590 keV
26 events of alpha's from 220Rn 6405 keV
26 events of alpha's from 224Ra 5789 keV
Quenching factor = 9.4 %

Energy = 617.9 +/- 2.4 keV
Among 605 events
553 events of alpha's from 218Po 6115 keV
26 events of alpha's from 216Po 6086 keV
26 events of alpha's from 220Rn 5405 keV
Quenching factor = 10.1 %
Neutron Monitoring Detector (cont’d)

\(^{230}\text{Ra} \) dominant contamination in \(^{238}\text{U} \) chain
- 6.66 \(\pm \) 0.27 cnts/liter/day – 1.5 \(\times 10^{-6} \) ppt of \(^{230}\text{Ra} \) level

\(^{232}\text{Th} \) dominant contamination in \(^{232}\text{Th} \) chain
- 0.32 \(\pm \) 0.06 cnts/liter/day – 0.63 ppt of \(^{232}\text{Th} \) level

- All neutron events: alphas from internal sources
 Neutron rate < 1.8 cpd (90 % C.L.) inside the shield

- Neutron rate outside the shield
 \(8 \times 10^{-7} \) /cm\(^2\)/s (1.5 < E neutron < 6 MeV)
 After subtracting internal background estimated from the data inside the shield
Electrostatic alpha spectroscopy: 70 liter stainless container
Use Si(Li) photodiode: 30 x 30 mm
Estimate ^{222}Rn amount with energy spectrum of ^{218}Po & ^{214}Po.
Photodiode calibration: ^{210}Po, ^{241}Am
^{222}Rn in air = 1 ~ 2 pCi/liter
Absolute efficiency calibration done with ^{226}Ra
Internal background of CsI Crystal

- 137Cs (artificial)
 - serious background at low energy
- 134Cs (artificial+133Cs(n, gamma))
- 87Rb (natural)
 - Hard to reject
 - reduction technique in material is known

Single Crystal (~10 kg) background @ ~10keV

87Rb 1.07 cpd/1ppb
137Cs 0.35 cpd/1mBq/kg
134Cs 0.07 cpd/1mBq/kg

From simulation
Reduction of Internal Background

Cs137 Reduction
- Water is main source of Cs137
- It was reduced by using purified water

Rb87 Reduction
- CsI solubility in water is very high.
- Recrystallization reduces Rb87.
- 10 ppb powder \rightarrow \sim 1 ppb (< 1.1cpd)
Further reduction of internal background

New CsI powder produced with ultra pure water

2mBq/kg \rightarrow 0.7 cpd internal background
Reduction of Internal Background cont’ed

Best available Crystal at Market

- 70cpd
- 20cpd
- 14cpd
- 6cpd
- 4cpd

Powder Selection

Cs137 Reduction Using Pure water

Rb87 Reduction by Re-crystallization

Ultra Pure Water Used
Data taking with CsI(Tl)

CsI(Tl) Crystal 8x8x30 cm³ (8.7 kg)
3” PMT (9269QA)
Quartz window, RbCs photo cathode
4~6 Photo-electron/keV
DAQ 500MHz Home Made FADC
5 photo-electron within 2μsec trigger condition
total 32μsec window

<table>
<thead>
<tr>
<th>Name</th>
<th>B.G.</th>
<th>Weight</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>0406</td>
<td>6CPD</td>
<td>6.7 kg</td>
<td>shanghai</td>
</tr>
<tr>
<td>0501A</td>
<td>6CPD</td>
<td>8.7 kg</td>
<td>shanghai</td>
</tr>
<tr>
<td>0501B</td>
<td>6CPD</td>
<td>8.7 kg</td>
<td>shanghai</td>
</tr>
<tr>
<td>0510A</td>
<td>~4CPD</td>
<td>8.7 kg</td>
<td>beijing</td>
</tr>
<tr>
<td>0510B</td>
<td>~4CPD</td>
<td>8.7 kg</td>
<td>beijing</td>
</tr>
<tr>
<td>0511</td>
<td>~4CPD</td>
<td>8.7 kg</td>
<td>beijing</td>
</tr>
<tr>
<td>0512</td>
<td>~4CPD</td>
<td>8.7 kg</td>
<td>beijing</td>
</tr>
<tr>
<td>0601</td>
<td>~4CPD</td>
<td>8.7 kg</td>
<td>beijing</td>
</tr>
<tr>
<td>0605A</td>
<td>~4CPD</td>
<td>8.7 kg</td>
<td>beijing</td>
</tr>
<tr>
<td>0605B</td>
<td>~4CPD</td>
<td>8.7 kg</td>
<td>beijing</td>
</tr>
</tbody>
</table>
Neutron calibration facility in SNU

300 mCi Am/Be source
- neutron rate 7×10^5 neutrons/sec
- a few 100 neutrons/sec hit
 3cmX3cm crystal
- Quenching factor of Recoil Energy
 Take Neutron calibration data
 PSD check – Quality factor

PSD discrimination
Mean time distribution

@Energy = 4-5 keV
137 Cs Compton
Neutron Recoil

Tag $\gamma (4.4 \text{MeV})$
to measure TOF and energy of neutrons
Extraction of nuclear recoil events

\[N_{NR}^i f_{NR}^i(x) + N_{ER}^i f_{ER}^i(x) \]

\[x = \log(\langle t \rangle) \]
Rate of nuclear recoil events

Log mean time distribution of background events are fitted to distributions of Compton events and neutron events

Filled circle: w/o PMT noise cut
Open square: with PMT noise cut - efficiency corrected
Open circle: fitted the number of nuclear recoil events

56Fe energy distribution
solid line for MC and dotted points for data

Simulated energy distributions of WIMP for different masses

20 GeV, 50 GeV, 100 GeV, 1 TeV
Interaction rate of WIMP

Local WIMP density $\sim 0.3\text{GeV/cm}^3$
Maxwellian velocity distribution with $\bar{v} \sim 270\text{km/s}$
\Rightarrow Local flux of WIMP $\sim 100\text{ GeV/m}_\chi x 10^5/\text{cm}^2/\text{s}$

$$\frac{dR}{dE} = \frac{\rho_x}{4v_E M_x M_{\text{red}}(M_{\text{nuc}})} \left[\text{erf}\left(\frac{v_{\text{min}} + v_E}{v_0}\right) - \text{erf}\left(\frac{v_{\text{min}}}{v_0}\right) \right],$$

$$v_{\text{min}} = \sqrt{\frac{E M_{\text{nuc}}}{2 M_{\text{red}}}},$$

$E_{\text{recoil}}(\text{max}) = 2v_x^2 m_N \frac{m_x^2}{(m_N + m_\chi)^2}$

Recoil energy $< 100\text{ keV}$
Measured energy $< 10\text{ keV}$ due to quenching
Dark matter density at the solar system
\[\rho_D = 0.3 \text{ GeV } c^{-2} \text{ cm}^{-3} \]
Use annual average parameters
\[V_0 = 220 \text{ km s}^{-1}, \quad V_E = 232 \text{ km s}^{-1}, \quad V_{Esc} = 650 \text{ km s}^{-1} \]

Spin Independent Limit

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Limit (kg days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAIAD - NaI(Tl)</td>
<td>3879</td>
</tr>
<tr>
<td>KIMS - CsI(Tl)</td>
<td>237</td>
</tr>
<tr>
<td>DAMA - NaI(Tl)</td>
<td>4123</td>
</tr>
</tbody>
</table>

PLB 633(2006) 201
In Feb. 2006
Spin dependent WIMP limit only with I

Pure proton case
Form factor and spin expectation value for “I” are obtained from
“M.T.Ressel and D.J.Dean PRC 56(1997) 535

Pure neutron case
WIMP search with CsI(Tl) crystal

Summary & Prospects

• First physics result was published

• Various R&D run was done
 – About 4000 kg day data acquired
 – With and without quartz block (5cm thick)
 – 0 degree and Room temperature operation
 – Analysis is ongoing

• Successfully reduce internal backgrounds of CsI(Tl) crystals
 – 70 kg full size crystals (8x8x30cm³) are being prepared
 – Mass production stage
 • 2 Crystal/Month growing is possible

• With more than 100 kg crystals, we start to probe
 – Annual modulation
 – SD+SI interaction search
Search for Low Mass WIMP

ULE HPGe detector setup

5g 1 cpd level detector
Tested at Academia Cincia, Taiwan
and delivered to SNU in Dec, 2004.

If successful → upgrade to 1kg mass

CsI(Tl) crystal
Compton veto
→ Built by TU
→ Delivered to SNU

Collaboration with China and Taiwan
Double beta decay

\[(A, Z) \rightarrow (A, Z+2) + 2\beta + 2\nu\]

2\nu mode: a conventional 2nd order process in nuclear physics

0\nu mode: a hypothetical process can happen only if:
\[\bullet M_\nu \neq 0 \quad \text{Since helicity has to flip}\]
\[\bullet \nu = \bar{\nu}\]

Several new particles can take the place of the virtual \(\nu\)

But 0\nu\beta\beta decay always implies new physics

1/ \(T_{1/2}^{0\nu}\) \(\propto <m_{\beta\beta}>^2\)

\(<m_{\beta\beta}> = \left| \sum_i U_{ei}^2 m_{\nu_i} e^{i\alpha_i} \right|^2\)
Experimental search for DBD

Two approaches:

1. Source \equiv Detector (calorimetric technique)
 - high energy resolution
 - 100% efficiency
 - no event topology

2. Source \neq Detector
 - event shape reconstruction
 - low energy resolution
 - low efficiency

If you use the calorimetric approach:

Signature: shape of the two electron sum energy spectrum

- two neutrino DBD continuum with maximum at $\sim 1/3 \, Q$
- neutrinoless DBD peak enlarged only by the detector energy resolution

Low energy resolution:
- 2ν events can mask 0ν ones

Low background:
- underground operation
- shielding
- low radioactivity of materials
Double beta decay R&D

1. TMSN50% + STD Liquid scintillator
 $^{124}\text{Sn} \rightarrow ^{124}\text{Te} + 2\beta$–decay
 $T_{1/2} > 3.41 \times 10^{19}$ yr at 90% C.L.

2. CaMoO_4 Crystal 1.8x1.8x3.5 cm3
 $^{100}\text{Mo} \rightarrow ^{100}\text{Ru} + 2\beta$–decay
 10kg Mo-100 CaMoO$_4$
 5-year running
 $T_{1/2} > 1 \times 10^{25}$ yr at 68% C.L.
 Present Best Limit >
 4.6×10^{23} yr @ 90% C.L.
Other activities
Summary and prospect

ULE HPGe detector for low mass WIMP search
- Compton veto detector delivered
- Prototype detector and shield is being soon

Cryogenic detector for low energy detection
- Fabrication and test of TES sensor on-going
- Need fast cycling of sample test for the TES optimization

Metal loaded liquid scintillator for $0\nu\beta\beta$ decay
- Pilot experiment with 1 liter 50% Sn loaded LS → encouraging result
- Study on internal background in progress
- Loading other element in progress

CaMoO_4
- Test with a 50g crystal has been done → encouraging result
- R&D for growing optimization and background reduction in progress
- 10kg crystal can be easily installed in the current WIMP search setup