A solution of the cusp problem in virialized DM halos in standard cosmology

A.G.Doroshkevich, V.N.Lukash, E.V.Mikheeva

Astro Space Centre of Lebedev Physics Institute
Advanced study in cosmology

- Analysis of CMB and its polarization
- Investigation of Ly-α forest
- Properties of earlier galaxies and quasars at large redshifts
- Properties of dwarf galaxies and the internal structure of galaxies (black holes, rotation curves, etc.)

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Cusp problem in galaxy halos
(simulations)

\[\rho \sim r^{-\alpha} \]
\[\alpha \in (1, 3/2) \]

Diemand et al. 2004
The cusp problem is being considered as main problem of the standard cosmology (DM non-interacting to baryons)

We argue: it is solved within the framework of standard DM model

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Internal structure of relaxed halos
(cores instead of cusps)

Idea: take into account the small scale part of initial cosmological perturbations that transforms into the thermal energy of DM particles during violent relaxation

Method: extra entropy of DM particles related to initial background perturbations

⇒ entropy profiles related to density profiles of DM halos

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Standard cosmological model

- $H_0 = 70 \text{ km/s/Mpc, } h=0.7$
- $\Omega_\Lambda = 0.7$
- $\Omega_m = 0.3$
- ΛCDM power spectrum:

$$P(k) = A \, \kappa T^2(\kappa) \exp(-R_f^2 \kappa^2), \quad \kappa = k/k_0$$

$$k_0 = 0.2 \text{ h/Mpc, } A = 240\sigma_8^2/k_0^3$$

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
\[\frac{H(z)}{H_0} = \sqrt{1 + \Omega_m (z^3 + 3z^2 + 3z)} \Rightarrow 0.5(1+z)^{3/2}, \quad z > 1 \]

\[\rho_m = \frac{3H_0^2 \Omega_m}{8\pi G} (1 + z)^3 \approx 3 \cdot 10^{-30} (1 + z)^3 \frac{g}{cm^3} \]

\[n = \frac{\rho_m}{m_{DM}} \approx 3 \cdot 10^{-6} \mu^{-1} (1+z)^3 \text{ cm}^{-3}, \quad \mu \equiv \frac{m_{DM}}{m_p} \]

- **R_f** - particle free path in the early Universe

\[m_{DM} > 1 \text{ M}\ell, \quad R_f < 4 \cdot 10^{-6} \Rightarrow \text{stellar halos} \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Observational and model spectra

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Equilibrium DM halos

- Adiabatic and irreversible processes

- Entropy function: \(F = \frac{T}{n^{2/3}} = \frac{p}{n^{5/3}} \)

- Hydrostatic equilibrium:
 \[
 \frac{1}{\rho} \frac{dp}{dr} = -\frac{GM(r)}{r^2}
 \]

- Initial (background) entropy in small scale:
 \(F \sim M^{1/3-2/3} \)

- Hierarchical and violent relaxation of compressed matter (large scale):
 \(F \sim M^{5/6}, \quad F \sim M^{4/3} \)

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Entropy of collisionless particles for isotropic velocity distribution

\[p = \rho \langle v^2 \rangle = nT = F n^{5/3} \]

one-dimensional peculiar velocity

Power-law density profiles: \(\alpha \in (0, 2) \)

\[\rho(r) \propto r^{-\alpha}, \quad M \propto r^{3-\alpha}, \quad p = C_1 + C_2 r^{2(1-\alpha)} \]

\(\alpha < 1 \) - finite pressure in the centre (core)

\(\alpha \geq 1 \) - infinite pressure at \(r \to 0 \) (cusp)

\(r \Rightarrow M \) -> conserving both for initial and relaxed matter fields

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
\[F(M) \propto C_1 M^{\beta_1} + C_2 M^{\beta_2} \propto M^\beta \]

\[\beta \in (\beta_1, \beta_2), \quad \beta_{1,2} = \frac{1 + 2\alpha / 3}{3 - \alpha} \pm \frac{|\alpha - 1|}{\alpha - 3} \]

\[\beta_{cr} = \beta_1 = \beta_2 = \frac{5}{6} \quad \Rightarrow \quad \alpha_{cr} = 1 \]

core (\(\beta < 5/6 \)): \[\beta_1 \in \left(0, \frac{5}{6}\right), \quad \beta_2 \in \left(\frac{2}{3}, \frac{5}{6}\right) \]

cusp (\(\beta \geq 5/6 \)): \[\beta_1 \in \left(\frac{5}{6}, \frac{4}{3}\right), \quad \beta_2 \in \left(\frac{5}{6}, \frac{10}{3}\right) \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
48 low brightness galaxies (LBG, de Blok et al. 2001)
15 low brightness galaxies

(Swaters et al. 2003)
NB (in relation to A. Klypin talk):

we call cores by cores and cusps by cusps

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Initial velocity field

\[\vec{r}(z, \vec{x}) = (1 + z)^{-1}[\vec{x} - g(z)\vec{S}(\vec{x})] \quad \delta(\vec{x}) \equiv \delta \rho / \rho = \text{div}(\vec{S}) \]

\[\vec{V}(z, \vec{x}) \equiv \dot{\vec{r}} = H(z)[\vec{r} + g'(z)\vec{S}(\vec{x})] \]

\[\Rightarrow \frac{H(z)}{1 + z}[\vec{x} - 2g(z)\vec{S}(\vec{x})] , \quad z > 1 \]

cosmological background

\[\langle \delta(\vec{x}) \rangle = \langle \vec{S}(\vec{x}) \rangle = 0 , \quad \vec{x}_1 - \vec{x}_2 = x \vec{e} , \quad q = x / \ell_v \]

\[\xi(x) \equiv \langle \delta(\vec{x}_1)\delta(\vec{x}_2) \rangle = \sigma^2_0 G_0(q) , \quad G(0) = 1 \]

\[\xi_{ij}(x) \equiv \langle S_i(\vec{x}_1)S_j(\vec{x}_2) \rangle = \frac{1}{3} \sigma^2_s [e_i e_j G_{12}(q) + (\delta_{ij} - e_i e_j)G_1(q)] \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
small scale density correlations
\[\ell_0 < 1 \text{ kpc} \quad (G_0 = 0.5) \]

large scale velocity correlations
\[\ell_1 \equiv \sigma_S = 11 \text{ } h^{-1}\text{Mpc} \quad (G_{12} = 0.5) \]
\[\ell_v \equiv 31 \text{ } h^{-1}\text{Mpc} \quad (G_1 = 0.5) \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
DM halo formation
(Zel’dovich approximation)

\[\tilde{r}(z, \tilde{x}) = (1 + z)^{-1}[\tilde{x} - g\tilde{S}(\tilde{x})] \]
\[\tilde{V}(z, \tilde{x}) \equiv H_0 (1 + z)^{1/2}[\tilde{x}/2 - g(z)\tilde{S}(\tilde{x})] \]

local background – protohalo with scale/mass resolution \(R \)
(turns into relaxed halo via violent/hierarchical relaxation)

conditional perturbations
(transform adiabatically to microscopic motion of particles inside the halo)

halo formation time

\[\langle \tilde{S}_R(\tilde{x}) \rangle_* = (1 + z_0)\tilde{x}/2 \]
\[\langle \tilde{S}_*(\tilde{x}) \rangle_* = 0 \]
\[\sigma_* \equiv \sqrt{\langle \tilde{S}_*^2 \rangle_*} \Rightarrow \sigma_S \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Variance of one-dimensional peculiar velocities inside halo

\[\vec{v}_* (z, \vec{x}) \equiv H_0 (1 + z)^{-1/2} \tilde{S}_* (\vec{x}) \]

\[v_{12} = \bar{e} \left[\vec{v}_* (z, \vec{x}_1) - \vec{v}_* (z, \vec{x}_2) \right] \]

\[\vec{x}_1 - \vec{x}_2 = \ell_v q \bar{e}, \quad |\bar{e}| = 1 \]

\[\sigma_v^2 \equiv \langle v_{12}^2 \rangle_* \equiv H_0^2 \sigma_S^2 (1 + z)^{-1} (1 - G_{12}(q)) \]

\[M \approx 10^{15} q^3 M_S \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Analytical approximation

\[1 - G_{12}(q) = \frac{1.5q^2}{\sqrt{2.25q^4 + q^2 + q^2 (p_0 / q)^{1.4} + q_0^2}} \]

\[p_0 \approx 10^{-2}, \quad q_0 \leq 10^{-3} \]

Doroshkevich, Demianski 2005

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Background entropy at moment z_0

$$\langle F(M) \rangle = \frac{m_{DM}\sigma_v^2(z_0,q)}{n^{2/3}(z_0)} \approx F_0 z_5^{-3} \begin{cases} M_9^{0.33}, & M_9 > 1 \\ M_9^{0.56}, & M_9 < 1 \\ 10^{-5}M_0^{0.66}, & M_0 \leq 1 \end{cases}$$

$$F_0 = \mu^{5/3}\text{keV cm}^2, \quad z_5 \equiv \frac{1+z_0}{5}, \quad M_n = \frac{M(q)}{10^n M_S}$$

Probability distribution function

$$dW(f) = e^{-f^2/2} \frac{df}{\sqrt{2\pi f}}, \quad f = \frac{F(M)}{\langle F(M) \rangle}$$

$$\langle f^2 \rangle = 3\langle f \rangle^2 = 3$$ large variations of F from the mean value

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Violent relaxation entropy

Isotermal shere
(Fillmore & Goldreich 1984)

\[\rho \sim r^{-2}, \quad M \sim r, \quad F \sim M^{4/3} \]

Collapse of ellipsoide
(Gurevich, Zybin 1988)

\[\alpha \sim 1.7 - 1.9 \]

Generated entropy in the central region is negligible in comparison with background one!

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Numerical simulation (N-body)

- Facilities and limitations
- Slopes of density and entropy in halo:
 \[\rho \sim r^{-\alpha}, \quad F \sim M^\beta \]
 core (\(\alpha < 1\)) or cusp (\(\alpha > 1\))?
- Universal NFW profile:
 \[
 x = r/r_s, \quad \rho \sim x^{-1}(1+x)^{-2}, \quad \alpha = 1, \quad \beta = 5/6
 \]
- Empirical Burkert profile:
 \[
 \rho \sim (1+x)^{-1}(1+x^2)^{-1}, \quad \alpha = 0, \quad \beta = 0
 \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Rotation curves (Marchesini 2002)
Rotation curves (Marchesini 2002)
Galaxy clusters profiles
(Pointecouteau et al., 2005)
Observational rotation curves

\[\rho \approx \frac{\rho_0}{(x_m + x)(1 + x^2)}, \quad x = \frac{r}{r_s} \]

\[M_0 = 4\pi\rho_0 r_s^3, \quad x_m \in (0, 1.3) \]

\[x_m \ll 1, \quad x_{\text{max}} \approx 2, \quad \frac{v_c^2(x)}{v_{\text{max}}^2(x)} \approx 2.5 \frac{M(x)}{xM_0} \]

\[x_m = 1.3, \quad x_{\text{max}} \approx 3.5, \quad \frac{v_c^2(x)}{v_{\text{max}}^2(x)} \approx 5.2 \frac{M(x)}{xM_0} \]

\[\frac{M(x)}{M_0} = \frac{x_m^2 \ln(1 + x/x_m) + 0.5 \ln(1 + x^2) - x_m \arctg(x)}{1 + x_m^2} \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Analytically modeled halos

\[F_b(M) \sim M^{\beta_b}, \quad \beta_b < \frac{5}{6} \]

\[F_r(M) \sim M^{\beta_r}, \quad \beta_r \geq \frac{5}{6} \]

\[F(M) = \sqrt{C_1 M^{2\beta_b} + C_2 M^{2\beta_r}} \]

\[\kappa = \frac{\langle F_b(M) \rangle}{\langle F_g(M) \rangle} \in (0, 1) \]

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
\(\alpha_r = \frac{5}{6} \quad r/r_{\text{max}} \quad \alpha_r = \frac{4}{3} \)

\(\kappa \sim 1 \) – solid line, \(\kappa \ll 1 \) – dashed line,

NFW – “stars”, Burkert – “dots”

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June
Conclusions

* The background entropy can prevent the cusp formation for halos with

\[10^6 M_\odot < M < 10^{12} M_\odot \]

* For smaller and larger galaxies and for clusters of galaxies its impact is attenuated

* The impact of the background entropy allows to reproduce the observed rotation curves

Lukash “A solution of the cusp problem”, DSU2006, Madrid, 22 June