The Dark Side of the Universe

Madrid, June 20-24, 2006

Dark Matter and Dark Energy from the solution of the strong CP problem

Roberto Mainini

Collaboration with: L. Colombo & S.A. Bonometto

Universita' di Milano Bicocca

Outline

- 1 Uncoupled and coupled Dark Energy: motivation and features
- 2 From axion model to dual-axion model:
 - Strong CP problem , Peccei-Quinn solution and the axion
 - Generalizing the PQ model axion and dark energy from a single scalar field
 - Dual-axion cosmology: background and density fluctuations
 - Dual-axion and WMAP data

3 - Conclusions

Introduction

Two dark components required:

- 1. Dark Matter (DM): non-baryonic component to account for dynamics in galaxy and galaxy cluster
- 2. Dark Energy (DE): smooth component with p<0 to account for cosmic acceleration

Most cosmological data (CMB, SNIa, LSS) fitted by 'concordance model' (∧CDM)

$$H \approx 72 \text{ km/s/Mpc}$$
, $n \approx 0.95$

$$\Omega_{\text{DM}} pprox 0.22 \; , \quad \Omega_{\text{DE}} pprox 0.74 \; , \quad \Omega_{\text{bar}} pprox 0.04 \;$$

DE from cosmological constant Λ but....

```
.... |\Lambda| < 10^{-56} cm<sup>-2</sup> why \Lambda so small? (fine-tuning problem)
.... why \Omega_{\rm DM} \approx \Omega_{\rm DF} ?
                                       (coincidence problem)
```

Dynamical DE models to ease ACDM problems:

Tracking quintessence

DE from a scalar field ϕ self-interacting through an effective potential $V(\phi)$ Independence of Ω_{DF} from initial conditions — no fine tuning

at least 1 more parameter required

Ex. : RP model
$$V(\phi) = \frac{\Lambda^{4+\alpha}}{\phi^{\alpha}}$$
 we have to set the energetic scale Λ

More complex models to try to unify DM and DE....

Coupled DE models

Similar values of ρ_{DM} and ρ_{DE} for a long period no coincidence problem

coupling parameter also required

Cosmologies with scalar field Basic equations

Spatially flat FRW universe with: baryons, radiation, cold DM and DE (scalar field ϕ with self-interaction potential $V(\phi)$)

Friedmann eq.
$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G(\rho_r + \rho_b + \rho_c + \rho_{DE})a^2$$

Continuity equations:

accolepled sase

$$\dot{\rho}_b + 3\frac{\dot{a}}{a}\rho_b = 0$$

$$\dot{\rho}_r + 4\frac{\dot{a}}{a}\rho_r = 0$$

$$\dot{\rho}_c + 3\frac{\dot{a}}{a}\rho_c = 0$$

$$\dot{\rho}_{DE} + 3\frac{\dot{a}}{a}(1 + 3w_{DE})\rho_{DE} = 0$$

Usual eqs. for baryons and radiation

Interaction DM-DE parametrized by

$$C(\phi) = \sqrt{16\pi G/3}\beta(\phi)$$

Coupled Dark Energy

Coupling effects: modified DM dynamics

- Variable mass for DM particles

$$\rho_c \propto a^{-3} e^{-\int Cd\phi} \Rightarrow m_c \propto e^{-\int Cd\phi}$$

- Violation of equivalence principle

$$\dot{p} = 0 \Longrightarrow \ddot{x} + \frac{\dot{m}}{m} \dot{x} = 0$$

- Newtonian interactions:

DM-DM particles: effective gravitational constant $G^* = G\left(1 + \frac{4}{3}\beta^2\right) = G\gamma$

$$G^* = G\left(1 + \frac{4}{3}\beta^2\right) = G\gamma$$

DM-baryons or baryons-baryons: ordinary gravitational constant

a particular coupled DE model:

dual-axion model

Axion: DM candidate from Peccei-Quinn (PQ) solution to the strong CP problem

modifying PQ model:

- Strong CP problem solved
- DM and DE from single complex scalar field
- no fine-tuning
- number of parameter as SCDM (even 1 less than ∧CDM...)

 DM an DE in fair proportion from one parameter
- DM and DE coupled but

 no extra parameter (coupling strength set by theory)

Strong CP problem

QCD Lagrangian includes a CP violanting term:

From electroweak sector

$$\mathcal{L}_{\theta} = \frac{\alpha_{s}}{2\pi} \theta_{eff} \ G \cdot \widetilde{G}$$

$$\mathcal{L}_{ heta} = rac{lpha_s}{2\pi} \, heta_{e\!f\!f} \, \, G \cdot \widetilde{G}$$
 where $heta_{e\!f\!f} = heta_{Q\!C\!D} + ext{arg det } M_q$ from QCD sector

Prediction of an electric dipole moment for the neutron

CP violation incompatible with experimental limits on electric dipole moment unless:

Peccei-Quinn solution and the axion

Peccei & Quinn 1977

PQ idea: CP-violating term is suppressed making θ a dynamical variable driven to zero by the action of its potential

- Imposing an additional global $U(1)_{PQ}$ symmetry in SM spontaneously broken at a scale F_{PQ}

Existence of a massless Nambu-Golstone boson A

- Assigning $U(1)_{PQ}$ charges to quarks so to have an interaction with gluon field

$$\mathcal{L}_{A} = \frac{1}{2} \partial^{\mu} A \partial_{\mu} A + \frac{\alpha_{s}}{2\pi} \frac{A}{F_{PQ}} G \cdot \widetilde{G}$$

 θ_{eff} re-interpreted as dynamical variable (the axion): $\theta_{eff} \longrightarrow \theta = \theta_{eff} + A/F_{PO}$

At low energies CP-violating terms generate a potential for the θ with minimum at $\theta = 0$ restoring dynamically CP-symmetry and θ (or A) acquires a mass m(T).

$$V(\theta) = m^2 F_{PQ}^2 (1 - \cos \theta) \approx \frac{1}{2} m^2 F_{PQ}^2 \theta^2$$

$$m(T >> \Lambda_{QCD}) = 0$$

 $m(T << \Lambda_{QCD}) \propto F_{PQ}^{-1}$

Axion cosmology

Equation of motion ($\theta << 1$):

$$\ddot{\theta} + 2\frac{\dot{a}}{a}\dot{\theta} + a^2m^2(T)\theta = 0$$

Harmonic oscillations for m(T) > 2H damped by cosmic expansion

Averaging over cosmological time \longrightarrow $\langle E_{kin} \rangle = \langle E_{pot} \rangle$ so....

Pressure:
$$p_{\theta} = \langle E_{kin} \rangle - \langle E_{pot} \rangle = 0$$

Axions as Dark Matter candidate

Energy density:

$$\dot{\rho}_{\theta} = \left(\frac{\dot{m}}{m} - 3\frac{\dot{a}}{a}\right)\rho_{\theta} \Rightarrow \rho \propto a^{-3}m(T) \longrightarrow T << \Lambda_{QCD} \Rightarrow \dot{m} = 0 \Rightarrow \rho_{\theta} \propto a^{-3}$$

In PQ model:

Additional U(1) symmetry introducing:

Complex scalar field
$$\Phi = \frac{\phi}{\sqrt{2}} e^{i\theta}$$
 with NG potential $V(|\Phi|) = \lambda (|\Phi|^2 - F_{PQ}^2)^2$

After symmetry break $\langle \phi \rangle = F_{PQ} = const.$ The phase θ is the axion.

Can a single scalar field account for both DM and DE? The dual-axion model

Replacing NG potential with a tracker quintessence potential.....

 $\dots |\Phi| = \phi$ no longer constant but evolves over cosmological times

Dual-axion model: Lagrangian theory

$$\mathcal{L} = \sqrt{-g} \left\{ \frac{1}{2} \left[\partial^{\mu} \phi \partial_{\mu} \phi + \phi^{2} \partial^{\mu} \theta \partial_{\mu} \theta \right] - V(\phi) - m^{2} (T, \phi) \phi^{2} (1 - \cos \theta) \right\}$$

PQ model

Phase (axion):

$$\ddot{\theta} + 2\frac{\dot{a}}{a}\dot{\theta} + a^2m^2\theta = 0$$

Modulus:

$$\phi = F_{PO} = \cos t$$

Dual-axion model

Phase (axion):

$$\ddot{\theta} + 2\left(\frac{\dot{a}}{a} + \frac{\dot{\phi}}{\phi}\right)\dot{\theta} + a^2m^2\theta = 0$$

Friction term modified: more damping

Modulus (Dark Energy):

$$\ddot{\phi} + 2\frac{\dot{a}}{a}\dot{\phi} + a^2V'(\phi) = \phi\dot{\theta}^2$$

 ϕ evolves over cosmological time

Averaging on Hubble time, at low energies ($T << \Lambda_{QCD}$).....

PQ model

Energy density:

$$\dot{\rho}_{\theta} + 3\frac{\dot{a}}{a}\rho_{\theta} = 0 \longrightarrow \rho_{\theta} \propto a^{-3}$$

As ordinary matter

Axion mass:

$$m \propto F_{PQ}^{-1} = \cos t$$

dual-axion model

Energy density:

$$\dot{\rho}_{\phi} + 3\frac{\dot{a}}{a}(\rho_{\phi} + p_{\phi}) = C(\phi)\dot{\phi}\rho_{\theta}$$

$$\dot{\rho}_{\theta} + 3\frac{\dot{a}}{a}\rho_{\theta} = -C(\phi)\dot{\phi}\rho_{\theta}$$

$$\rho_{\theta} \propto a^{-3}\phi^{-1}$$

Axion mass:

$$m \propto \phi^{-1}$$

 $|\phi|$ variation causes mass to vary with time

equivalent to:

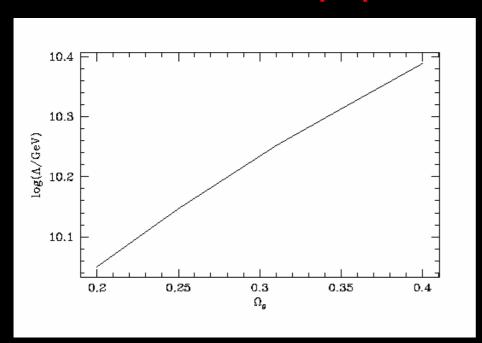
COUPLED QUINTESSENCE MODEL with a time dependent coupling $C(\phi)=1/\phi$ (\longrightarrow Coupling set by the theory)

Dual-axion model: background evolution

We use a SUGRA potential

$$V(\phi) = rac{\Lambda^{4+lpha}}{\phi^{lpha}} e^{4\pi G\phi^2}$$

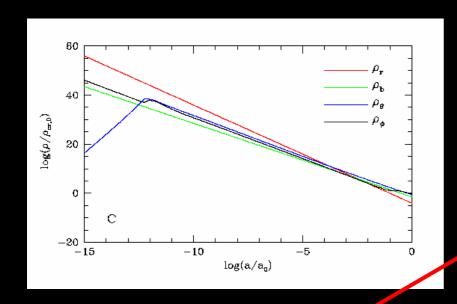
DM an DE in fair proportion from one parameter

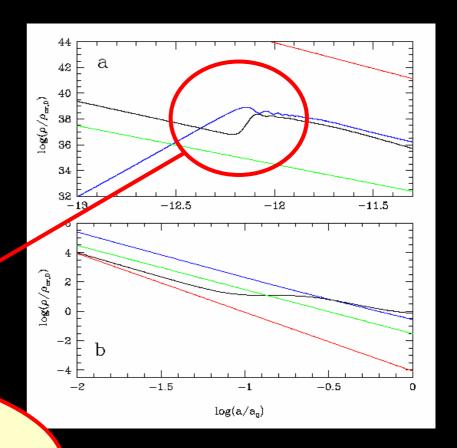


$$\Omega_{DM} = 0.3 \Rightarrow \Lambda \approx 10^{10} \, GeV$$

Note: in a model with dynamical DE (coupled or uncoupled) once Ω_{DM} is assigned Λ can be arbitrarily fixed. Here Λ is univocally determined

Dual-axion model: background evolution





$$\ddot{\phi} + 2\frac{\dot{a}}{a}\dot{\phi} + a^2V'(\phi) = \phi\dot{\theta}^2$$

once coupling term $\phi \dot{\theta}^2 >> a^2 V'$ settles on different tracker solution

Density fluctuations: linear evolution

From linear theory:

DM and baryons density fluctuations described by 2 coupled Jeans' equations

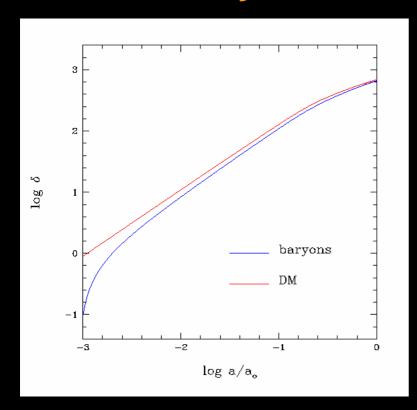
$$\ddot{\delta}_b + \frac{\dot{a}}{a}\dot{\delta}_b = 4\pi (G\rho_c\delta_c + G\rho_b\delta_b)a^2$$

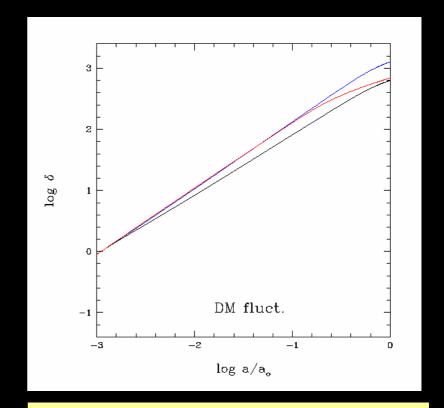
$$\ddot{\delta}_c + \left(\frac{\dot{a}}{a} - C\dot{\phi}\right)\dot{\delta}_c = 4\pi (G*\rho_c\delta_c + G\rho_b\delta_b)a^2$$
 modified friction term modified source term

As a consequence.... Linear bias $\delta_b = b \delta_c$

$$\delta_b = b\delta_c$$

Density fluctuations: linear evolution





Red: dual axion $C(\phi)=1/\phi$

Blue: Coupled DE C=cost=<C(ϕ)>

Black: ACDM

Differences from ACDM:

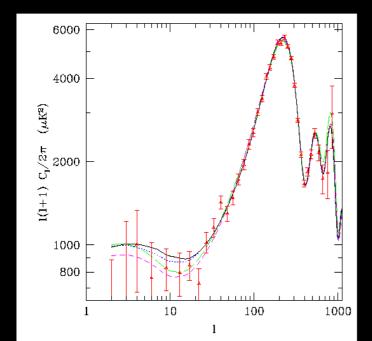
- objects should form earlier
- baryons fluct. keep below DM fluct. until very recently

Dual-axion model: fit to WMAP data

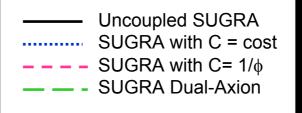
Best fit parameters:

Uncoupled SUGRA						
Х	<x></x>	σ_{x}				
$\Omega_{\text{b}}\text{h}^2$	0.025	0.001				
$\Omega_{\text{dm}} h^2$	0.12	0.02				
h	0.63	0.06				
τ	0.21	0.07				
n _s	1.04	0.04				
Α	0.97	0.13				
Log Λ	3.0 7.7					

SUGRA with C=cost		SUGRA with C= 1/φ			
Х	<x></x>	σ_{x}	Х	<χ>	σ_{x}
$\Omega_{b}h^{2}$	0.024	0.001	$\Omega_{b}h^{2}$	0.025	0.001
$\Omega_{\text{dm}}h^2$	0.11	0.02	$\Omega_{\text{dm}}h^2$	0.11	0.02
h	0.74	0.11	h	0.93	0.05
τ	0.18	0.07	τ	0.26	0.04
n _s	1.03	0.04	n _s	1.23	0.04
Α	0.92	0.14	А	1.17	0.10
Log Λ	-0.5	7.6	Log Λ	4.8	2.4
ß	0.10	0.07			



- Main differences at low I
- χ^2_{eff} from 1.064 (uncoupled SUGRA) to 1.071 (C=1/ ϕ)

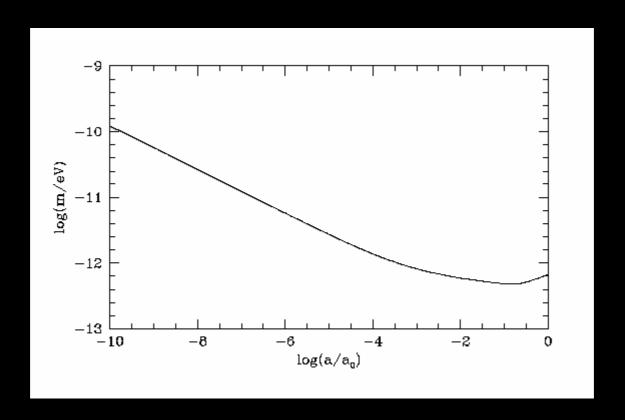


Conclusions

Dual-axion model

- One complex scalar field yields both DM & DE
- Fair DM-DE proportions from one parameter : Λ/GeV~10¹⁰
- Strong CP problem solved
- DM-DE coupling fixed (C=1/φ)
- Fair fit to WMAP data, constraining ∧ in the expected range
- SUGRA potential: large H₀ (~90 ± 10 km/s/Mpc)
- Fluctuation growth is fair
- Structure formation earlier than in ∧CDM

Axion mass



 Φ variation cause a dependence of the axion mass on scale factor a Rebounce at z=10 could be critical for structure formation

