Searching for Dark Matter in Unifications Models: A Hint from Indirect Sensitivites towards Future Signals in Direct Detection and B-decays.

Comparison between accelerator and direct detection constraints in unification models:

- mSugra
- CMSSM
- NUHM

with: Ellis, Falk, Heinemeyer, Santoso, Spanos Weiglein

Unification Conditions

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$
- Trilinear terms: $A_i = A_0$

mSugra Conditions

- Gaugino masses: $m_{3/2} = m_0$
- Bilinear term: $B_0 = A_0 m_0$

Boundary Conditions

• Input parameters: μ , m_0 , $m_{1/2}$, A_0 , B. predict M_Z , $\tan \beta$, m_A

CMSSM conditions

Instead CMSSM:

Input parameters: M_Z , m_0 , $m_{1/2}$, A_0 , $\tan \beta$

predict μ, B, m_A

mSUGRA conditions

• Then:

Input parameters: M_Z , m_0 , $m_{1/2}$, A_0 , B predict μ , m_A , $tan \beta$

Constraints

• Chargino mass limit

$$M_{\chi^{\pm}} \ge 104 \text{ GeV}$$

Constrains $(M_2 \text{ and } \mu)/m_{1/2}$

Higgs mass limit

$$M_{\rm H} \ge 114 \, {\rm GeV}$$

Constrains $(m_A, M_2, A)/m_{1/2}$
particularly at low tan β

- b to s γ Constrains $(m_A)/m_{1/2}$ at high tan β and $\mu < 0$
- Also sfermion mass limits from LEP and CDF

$$m_f \ge 99 \text{ GeV (roughly)}$$

 $\chi \text{ is the LSP}$

Chargino mass limit

$$M_{\chi^{\pm}} \ge 104 \text{ GeV}$$

Constrains $(M_2 \text{ and } \mu)/m_{1/2}$

Higgs mass limit

$$M_{\rm H} \ge 114 \, {\rm GeV}$$

Constrains $(m_A, M_2, A)/m_{1/2}$
particularly at low tan β

- b to s γ Constrains $(m_A)/m_{1/2}$ at high tan β and $\mu < 0$
- Also sfermion mass limits from LEP and CDF $m_f \ge 99$ GeV (roughly)

• $(g-2)_{\mu}$

$$a^{\text{exp}} - a^{\text{theo}} = (25.2 \pm 9.2) \times 10^{-10}$$

• $B_s \rightarrow \mu^+ \mu^-$

BR <
$$2.0 \times 10^{-7}$$
 from CDF and DØ Important at large tan β and small m_A

Indirect Sensitivities

$$\chi^2 \equiv \sum_{n=1}^4 \left(\frac{R_n^{\text{exp}} - R_n^{\text{theo}}}{\sigma_n} \right)^2 + \chi_{M_h}^2$$

- **M**_W
- $\sin^2 \theta$
- $(g-2)_{\mu}$
- BR($b \rightarrow s \gamma$)
- M_h

$$\chi^{2}(M_{h}) = -2\log\left(\int_{-\infty}^{\infty} e^{-\tilde{\chi}^{2}(x)/2} \tilde{\Phi}(M_{h} - x) dx\right)$$

 $\chi^2(M_h)$ determined from LEP CLs

How Much Dark Matter

WMAP 1

Spergel etal

Precise bounds on matter content

How Much Dark Matter

WMAP 1

Spergel etal

Precise bounds on matter content

$$\Omega_m h^2 = 0.135^{+0.008}_{-0.009} \qquad \Omega_b h^2 = 0.0224 \pm 0.0009$$

$$\Omega_{cdm} h^2 = 0.1126_{-0.0090}$$
 or
$$\Omega_{cdm} h^2 = 0.094 - 0.129 \quad (2 \text{ } \sigma)$$

WMAP 3

Spergel etal

$$\Omega_{cdm}h^2 = 0.1045_{-0.0095}$$
or
$$\Omega_{cdm}h^2 = 0.085 - 0.119 \quad (2 \text{ } \sigma)$$

Typical Regions

 $m_{1/2}$

Direct Detection

- Eastic scattering cross sections for χ p
- Use only parameters which satisfy accelerator bounds and relic density
- Dominant contribution to spin-independent scattering

$$\mathcal{L} = \alpha_{3i} \bar{\chi} \chi \bar{q}_i q_i,$$

Through light squark exchange

Dominant for binos

Through Higgs exchange

- Requires some Higgsino component

Uncertainties from hadronic matrix elements

The scalar cross section

$$\sigma_3 = \frac{4m_r^2}{\pi} [Zf_p + (A - Z)f_n]^2$$

where

$$\frac{f_p}{m_p} = \sum_{q=u,d,s} f_{Tq}^{(p)} \frac{\alpha_{3q}}{m_q} + \frac{2}{27} f_{TG}^{(p)} \sum_{c,b,t} \frac{\alpha_{3q}}{m_q}$$

and

$$m_p f_{Tq}^{(p)} \equiv \langle p | m_q \bar{q} q | p \rangle \equiv m_q B_q$$

determined by

$$\sigma_{\pi N} \equiv \Sigma = \frac{1}{2}(m_u + m_d)(B_u + B_d)$$

will take:

$$\Sigma = 45 \text{ GeV} \text{ or } 64 \text{ GeV}$$

mSugra models

- tan β fixed by boundary conditions (B₀ = A₀ m₀)
- ``planes'' determined by A₀/m₀
- Gravitino often the LSP $(m_{3/2} = m_0)$

The Very CMSSM (mSUGRA):

mSugra models

- tan β fixed by boundary conditions (B₀ = A₀ m₀)
- ``planes'' determined by A₀/m₀
- Gravitino often the LSP $(m_{3/2} = m_0)$
- No Funnels
- No Focus Point

mSugra models

- tan β fixed by boundary conditions (B₀ = A₀ m₀)
- ``planes'' determined by A₀/m₀
- Gravitino often the LSP $(m_{3/2} = m_0)$
- No Funnels
- No Focus Point
- Weak signal from $B_s \rightarrow \mu^+ \mu^-$

Indirect Sensitivities to Gravitino Dark Matter Models

 $\chi 2$ deteremined predominantly by $(g-2)_{\mu}$ on the right and m_h on the left

Sensitivity to GDM models

Drop $m_{3/2} = m_0$: Indirect Sensitivities to Neutralino Dark Matter

EHOW

Sensitivity to NDM models

Direct Detection of NDM in the mSugra models

CMSSM

• Drop $B_0 = A_0 - m_0$: Select tan β

Foliation in tan β

Focus Point Region

As m₀ gets very large, RGE's force μ to 0, allowing neutralino to become Higgsino like with an acceptable relic density.

Feng Matchev Moroi Wilczek

Indirect Sensitivities to CMSSM models

Sensitivity to M_W and $\sin^2 \theta_W$

Current and future sensitivities

Using the Higgs mass to determine CMSSM parameters

Ellis, Nanopoulos, Olive, Santoso

$$B_s o \mu^+ \mu^-$$

Ellis, Olive, Spanos

Direct Detection in the CMSSM

Direct Detection in regions of lowest χ^2

NUHM

- Drop unification of scalar masses
- All Higgs soft masses, m₁ and m₂, to be chosen independently of m₀
- Allows µ and m_A to be free parameters

The $m_0 - m_{1/2}$ plane

+ CMSSM value

Ellis, Olive, Santoso

Indirect Sensitivities to NUHM Models

The m_A – μ plane

+ CMSSM value

Ellis, Olive, Santoso

Direct Detection in the NUHM

CDMS Excluded models

Consequences

for $B_s \rightarrow \mu^+ \mu^-$

Competition between Direct Detection and $B \rightarrow \mu^+ \mu^-$

Low Energy Effective Susy Theories

- Drop Squark-Slepton Universality
- Retain GUT constraint

Summary

- mSugra models most difficult to access experimental esp. if GDM
- Good indication from indirect sensitivities for `low' energy signal for SUSY.
- Good prospect for Direct detection and $B \rightarrow \mu^+ \mu^-$ particularly in non CMSSM models (unless GDM)