Search for Dark Matter with the AMS experiment

Carmen Palomares
CIEMAT (Madrid)
On behalf of the AMS Collaboration
The AMS experiment

AMS is a magnetic spectrometer to be installed on ISS (~ 450 km)

The aim of AMS is the direct detection of primary cosmic rays (E ≤ 1 TeV/n)

- Large statistics (Large acceptance 0.45 m2sr, long exposure > 3 years)
- Determination of energy with high resolution
- Very good particle identification
The AMS experiment: Specific objectives

- Direct detection and identification of primary cosmic rays
 - Very accurate measurements of the spectrum of H & He ($R \leq 1$ TV)
 - Chemical abundances (from H to Fe)
 - Study of gamma rays in the GeV to TeV range
 - The ratio of spallation products to the primary nuclei (B/C)
 - Isotopic ratios of elements ($E \leq 10$ GeV/n)
- Antimatter search with a sensitivity 10^3 better than current limits
The AMS experiment: Detector

Transition Radiation Detector (TRD)
p/e separation $10^2 - 10^3$ up to 300 GeV

Time of Flight (TOF)
Trigger, Z identification
$\sigma(\beta)/\beta = 3.5\%$ ($\beta=1$), $\Delta t \sim 120$ ps

Superconducting magnet
$BL^2 = 0.85$ Tm2

Silicon Tracker
$\sigma(R)/R = 1.5\%$ for 10 GV $E \leq 1$ TV
Z and sign(Z), $Z \sim 26$

Ring Image Cerenkov Counter (RICH)
$\sigma(\beta)/\beta \sim 0.1\%$ for protons
Isotope separation $\sigma(m)/m = 2\%$
Z identification

Electromagnetic Calorimeter (ECAL)
e$^+, \gamma$ detection $\sigma(E)/E < 3\%$ for 100 GeV
p/e rejection factor 10^4 for $E < 1$ TeV
AMS Detector Status

The sub-detectors have been tested:
- Test-beams at CERN using prototypes of the final detectors
- Qualification tests of the flight elements

Most of the sub-detectors already constructed
Tracker and RICH are being assembled and qualified
Integration and functional tests of the whole detector at CERN (2007)
The detector will be completely ready to fly in 2008

Magnet: coils already done
ToF
Dark matter: neutralinos

CMB data (WMAP) confirms that most of the matter is non-baryonic

\[\Omega_M h^2 = 0.135 \pm 0.008 \quad \Omega_b h^2 = 0.0224 \pm 0.0009 \]

Most of non-baryonic dark matter candidates require physics beyond the SM of particle physics

Large structure formation theories suggest a non-relativistic, weak interacting massive particle (WIMP)

Supersymmetry (one of the best motivated scenarios beyond the SM) predicts the existence of a weak interacting neutral particle with a mass of the order or below the TeV scale \(\rightarrow \) Neutralino

MSSM (R-parity) \(\rightarrow \) Lightest supersymmetric particle (LSP) is stable
At present, \(\text{Mass(LSP)} > 40 \text{ GeV} \) from LEP experiments
Indirect detection of DM: neutralino annihilation

\[\chi \chi \longrightarrow P P \quad \text{where } P \text{ is fermion or boson} \]

Signatures with small physical backgrounds

Gamma rays:
- Mono-energetic gamma-ray lines from \(\chi \chi \rightarrow \gamma \gamma \), \(\chi \chi \rightarrow \gamma Z \)
- Continuum emission from the decay of other primary annihilation products

Positrons:
- From the decay of gauge bosons Ex: \(\chi \chi \rightarrow WW \rightarrow e^+ v_e W^\gamma \)
- From heavy quark/lepton decay Ex: \(\chi \chi \rightarrow bb \rightarrow e^+ \ldots \)

Antiprotons and antideuterons:
- Production in neutralino annihilation by hadronization of quarks and gluons

AMS will measure all these fluxes simultaneously

DSU 2006 22/06/06
Carmen Palomares AMS-CIEMAT
DM Propagation to Earth vicinity

Flux in Earth vicinity

\[\phi_{\bar{p}d^+} = \langle \rho^2 \rangle \frac{\langle \sigma_{\text{anni}} \nu \rangle}{m_\chi^2} N_{\bar{p}d^+} G(r_0, r) \]

\[\phi_\gamma = \frac{\langle \sigma_{\text{anni}} \nu \rangle}{m_\chi^2} N_\gamma \int_{\text{los}} d\rho^2(r) \]

\(\rho \): Density of DM
- Local density 0.3 GeV/cm\(^3\)
- Distribution: Clumps \(\langle \rho^2 \rangle = \text{Boost} \langle \rho \rangle^2 \), Halo shape

\(N_i \): Number of particles of type \(i \) produced per annihilation

\(\langle \sigma_{\text{anni}} \nu \rangle \): Annihilation cross-section

\(G(r_0, r) \): Propagation term -> diffusion, reacceleration, solar modulation, etc...
Indirect detection: backgrounds

Antiprotons and positrons are secondary cosmic rays from interaction of nuclei with the ISM

Antideuteron almost background free at low energies

Gamma: - Isotropic extragalactic γ-ray background radiation
 - Galactic diffuse radiation
Indirect detection of DM by AMS

<table>
<thead>
<tr>
<th>Particle</th>
<th>Energy range (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiproton</td>
<td>0.5-400</td>
</tr>
<tr>
<td>Positron</td>
<td>0.1-400</td>
</tr>
<tr>
<td>Gamma</td>
<td>1-1000</td>
</tr>
</tbody>
</table>
Indirect detection of DM by AMS: antiproton signature

The detailed calculation of secondary and DM spectra depends on the propagation model, that will be constrained by the B/C data (very precise measurement by AMS-02)
Clumpy DM to cause significant distortions to the high energy secondary spectrum

Data well explained by secondary contribution alone

Donato et al. astro-ph/0306207
Antiproton selection

Proton rejection: control of charge confusion, interactions with the detector and misreconstructed tracks

Electron rejection: TOF+RICH β measurement at low energies TRD+ECAL rejection capabilities at high energies

Carmen Palomares AMS-CIEMAT
DM search in AMS: antiproton signature

Very precise measurement of the antiproton spectrum at high momentum by AMS-02

Several SUSY configurations could be excluded at these energies for most favorable configurations

\[\Phi_p (m^2 s^{-1} sr^{-1} GeV^{-1}) \]

\[M_X = 964 \text{ GeV (x4200)} \]

\[M_X = 777 \text{ GeV (x1200)} \]
Indirect detection of DM by AMS: positron signature

The HEAT experiment (94+95, 2000) observed a flux of cosmic e^+ in excess of the predicted rate.

Positrons travel shorter distances than antiprotons. Therefore, the flux in Earth vicinity depends on local DM distribution.

Clumpiness of DM enhances the annihilation rate of WIMP,s increasing the discovery potential.

Non-negligible uncertainties on background due to propagation effects.

DSU 2006 22/06/06 Carmen Palomares AMS-CIEMAT
Indirect detection of DM by AMS-01: positron signature

- Positron fraction spectrum measured by AMS-01 '98 using single tracks.
- e^+/p separation up to 3 GeV (Cerenkov counter)

- New analysis 2006 extends sensitivity to 40 GeV
- Positron identification using bremsstrahlung events
 3 track signature: primary e^+, e^- radiate brem γ and γ converts to $e^+ e^-$

Result compatible with HEAT data

DSU 2006 22/06/06
Positron selection in AMS-02

e\(^+\) / p separation

ECAL: electromagnetic shape up to 1 TeV
TRD: large X ray activity up to 300 GeV
Overall proton rejection of \(\sim 10^5\)
The flux of positrons depends on:
1. SUSY scenario (set of parameters)
2. Boost factor
 Enhancement of flux due to the clumpiness of DM in the galactic halo
 Tuned in order to match the HEAT excess

B’ (“bulk”) benchmark scenario: m_0=60, m_{1/2}=250, tanβ=10, m_x=98 GeV
DM search in AMS: positron signature

E’ (“focus point”) benchmark scenario: $m_0=1530$, $m_{1/2}=300$, $\tan\beta=10$, $m_x=124$ GeV

Fit HEAT data

AMS-02 expectations

W. de Boer scenario: $m_0=500$, $m_{1/2}=500$, $\tan\beta=50$, $m_x=208$ GeV

Simultaneous fit to antiproton spectrum + HEAT + EGRET

Fit HEAT data

AMS-02 expectations
Gamma signal of Dark Matter

Discovery potential of DM through indirect detection of γ-ray depends on:

Dark Matter structure and density profile near the Galactic Center

Different dark matter candidates

$$\phi_\gamma = \frac{\langle \sigma_{\text{anni}} \nu \rangle}{m_\chi^2} N_\gamma \int_{\text{los}} ds \rho^2(r)$$
Photon detection in AMS

Conversion mode
Detection in the tracker of the e^+e^- pairs from photon conversion in upstream layers

Single photon mode
Detection in the ECAL
Photon detection in AMS

Selection Criteria

Conversion mode:
1. Very small invariant mass
2. No TRD activity in the top layers
3. No particle activity in the rest of the detector

\[\text{p and e- rejection factor } \sim 5 \times 10^4 \]

Single Photon mode:
1. Electromagnetic shower in the ECAL
2. Reconstructed trajectory inside sensitive volume
3. No activity in the rest of the detector

\[\text{p and e- rejection factor } > 10^5 \]

DSU 2006 22/06/06
AMS sensitivity for different scenarios

DM candidates: Different SUSY benchmark models + scan of many SUSY configurations

Galactic halo profile: The discovery potential increases for cuspy profiles
Summary

- AMS is a multipurpose detector in space that will search for signatures of neutralino annihilation in the galactic halo.
- AMS will make use of high statistic (3 years mission and large acceptance) and very precise particle identification.
- The AMS measurements of B/C and 10Be/9Be ratios will impose severe constraints to Galaxy models and diffusion parameters for background estimation.
- AMS will measure the high energy tail (50-400 GeV) of the antiproton spectrum to an unprecedented accuracy.
- AMS will be able to confirm or disprove the slight excess in HEAT/AMS-01 positron data for $E>10$ GeV.
- A gamma dark matter signal from the galactic center will be visible in AMS in cuspy profile scenarios or in case of other enhancements.