Cosmologies with running parameters and dynamical cosmon

(Implications on the coincidence problem)

Joan Solà

HEP Group (Dep. E.C.M.) Universitat de Barcelona

C.E.R. for Astrophysics, Particle Physics and Cosmology

DSU 06, Madrid, June 20-24 2005 AD

GUIDELINES

- Dynamical Dark Energy
- Variable cosmological constant: Effective EOS.
 "DE picture" versus "CC picture"
- Effective transition " quintessence → phantom" without scalar fields.
- An application: a "running" cosmological "constant" model
- Adding a dynamical "cosmon" : ∧XCDM Model
- Implications on the Cosmological Coincidence Problem
- Conclusions.

Related works

This talk is mainly based on the results obtained in the recent works:

- J. Grande, JS, H. Stefancic, LXCDM: a cosmon model solution to the cosmological coincidence problem?, gr-qc/0604057
- JS, H. Stefancic, Dynamical dark energy versus variable cosmological constant, Mod. Phys. Lett. A21 (2006) 479.
- JS, H. Stefancic, Effective equation of state for dark energy: mimicking quintessence and phantom energy through a variable Λ
 Phys. Lett. B624 (2005) 147

Previous related works:

- I.L. Shapiro, JS, H. Stefancic, JCAP 0501 (2005) 012
- I.L. Shapiro, JS, C. España-Bonet, P. Ruiz-Lapuente *Phys. Lett.* **B** 574 (2003) 149; *JCAP* **0402** (2004) 6
- I.L. Shapiro, JS, JHEP 0202 (2002) 006
- I.L. Shapiro, JS, *Phys. Lett.* **B**475 (2000) 236

"Canonical" definition of Dynamical Dark Energy

Assume there is no "true" Λ but some **DE** entity with the following properties:

 The total energy-momentum tensor on the r.h.s. of Einstein eqs. is the sum

$$\tilde{T}_{\mu\nu} \equiv T^{M}_{\mu\nu} + T^{D}_{\mu\nu} .$$

• Both tensors are separately conserved, $\nabla^{\mu} \tilde{T}_{\mu\nu} = 0$ is equivalent to

$$\nabla^{\mu} T_{\mu\nu}^{M} = 0 \Longleftrightarrow \frac{d\rho}{dt} + 3 H(\rho + p) = 0,$$

and

(unmixed conservation laws)

$$\nabla^{\mu} T_{\mu\nu}^{D} = 0 \Longleftrightarrow \frac{d\rho_{D}}{dt} + 3 H (\rho_{D} + p_{D}) = 0$$

One popular possibility of this is the idea of quintessence.

Subsequently one introduces an "effective" equation of state

$$p_D = \omega_D \rho_D$$

to describe a phenomenological relationship between p_D and ρ_D .

Finally one also assumes that at present:

$$\omega_{D} = \frac{p_{D}}{\rho_{D}} = \frac{\frac{1}{2}\xi\dot{\chi}^{2} - V(\chi)}{\frac{1}{2}\xi\dot{\chi}^{2} + V(\chi)} \left\{ \begin{array}{l} \gtrsim -1 & \xi > 0 \text{ (quintessence)} \\ \lesssim -1 & \xi < 0 \text{ (phantom DE)} \end{array} \right.$$

• For Λ the only possible equation of state is

$$p_{\Lambda} = -\rho_{\Lambda}$$
.

The solutions of the two conservation equations read

$$\rho_s(z) = \rho_s(0) (1+z)^{\alpha}$$

$$\alpha = 3(1 + \omega_m) \ (\omega_m = 1/3 \ \text{or} \ \omega_m = 0)$$

and

$$\rho_{D}(z) = \rho_{D}(0) \zeta(z)$$

$$\zeta(z) \equiv \exp\left\{3 \int_0^z dz' \frac{1 + \omega_D(z')}{1 + z'}\right\}$$

Hence

$$\omega_D(z) = -1 + \frac{1}{3} \frac{1+z}{\zeta} \frac{d\zeta}{dz}$$

$$H_D^2(z) = H_0^2 \left[\tilde{\Omega}_M^0 (1+z)^{\alpha} + (1 - \tilde{\Omega}_M^0) \zeta(z) \right]$$

(flat space)

$$(\Delta\Omega_M\equiv\Omega_M^0- ilde{\Omega}_M^0)$$

Variable **1**

• For variable Λ , the conserved quantity is not the matter energy-momentum tensor $T_{\mu\nu}$, but the sum

$$\tilde{T}_{\mu\nu} \equiv T_{\mu\nu} + g_{\mu\nu} \, \rho_{\Lambda}(t) \,, \qquad \nabla^{\mu} \, \tilde{T}_{\mu\nu} = 0 \,.$$

By the Bianchi identities, Λ is constant \iff the matter $T_{\mu\nu}$ is individually conserved ($\nabla^{\mu}T_{\mu\nu}=0$)— in particular, $\rho_{\Lambda}=$ const. if $T_{\mu\nu}=0$ (e.g. during inflation).

From FLRW metric

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - k r^{2}} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2} \right),$$

we may compute explicitly the local energy-conservation law $\nabla^{\mu} \tilde{T}_{\mu\nu} = 0$. The result is an equation allowing transfer of energy between ordinary matter and the dark energy associated to the Λ term :

$$\frac{d\rho_{\wedge}}{dt} + \frac{d\rho}{dt} + 3H(\rho + p) = 0,$$

(mixed conservation law!)

"DE picture" versus "CC picture"

- Observations leading to the EOS of the DE are sensitive to the function H = H(z).
- We can describe a variable CC model with mixed energy-conservation law as if it would be a dynamical DE model with unmixed EC-law.
- Let us assume there is an underlying fundamental dynamics

$$\rho_{\Lambda}(z) = \rho_{\Lambda}(\rho(z), H(z), ...), G(z) = G(\rho(z), H(z), ...)$$

$$H_{\Lambda}^2 = \frac{8\pi G}{3}(\rho + \rho_{\Lambda})$$

H. Stefancic, J.S. *Mod. Phys. Lett. A 21 (2006) 479*

$$\frac{d}{dt} \left[G(\rho + \rho_{\Lambda}) \right] + 3 G H_{\Lambda} (\rho + p) = 0. \quad \text{(Bianchi identity)}$$

$$H^{2}_{\Lambda}(z) = H^{2}_{0} \left[\Omega^{0}_{M} f_{M}(z; r) (1+z)^{\alpha} + \Omega^{0}_{\Lambda} f_{\Lambda}(z; r) \right]$$

$$\xi_{\mathsf{M}}(z) \equiv \frac{G(z)}{G_0} \rho_{\mathsf{M}}(z)$$

$$\xi_{\mathsf{M}}(z) \equiv \frac{G(z)}{G_0} \rho_{\mathsf{M}}(z)$$

$$f_{\mathsf{M}}(z) \equiv \frac{\xi_{\mathsf{M}}(z)}{\rho_{\mathsf{M}}^0 (1+z)^{\alpha}}$$

$$\xi_{\mathsf{M}}(z) \equiv \frac{G(z)}{G_0} \rho_{\mathsf{M}}(z)$$

$$f_{\mathsf{M}}(z;r) = \frac{\xi_{\mathsf{M}}(z)}{\rho_{\mathsf{M}}^0}$$

$$\xi_{\Lambda}(z) \equiv \frac{G(z)}{G_0} \rho_{\Lambda}(z)$$
$$f_{\Lambda}(z;r) = \frac{\xi_{\Lambda}(z)}{\rho_{\Lambda}^0}$$

Whatever it be their form, these functions must satisfy $f_M(0;r) = f_{\Lambda}(0;r) = 1$ in order that the cosmic sum rule $\Omega_M^0 + \Omega_\Lambda^0 = 1$ is fulfilled.

⇒ "Matching condition" of the two pictures:

$$H^2_{\overline{D}}(z) = H^2_{\overline{\Lambda}}(z)$$

$$H_0^2 \left[\tilde{\Omega}_M^0 (1+z)^\alpha + (1-\tilde{\Omega}_M^0) \zeta(z) \right] = H_{\wedge}^2(z)$$

Matching generates an "effective EOS" for Λ :

$$\omega_{\text{eff}}(z) = -1 + \frac{1}{3} \frac{1+z}{\zeta} \frac{d\zeta}{dz}$$
$$= -1 + \frac{\alpha}{3} \left(1 - \frac{\xi_{\Lambda}(z)}{\rho_D(z)} \right)$$

$$\rho_{D}(z) = \xi_{\Lambda}(z) - (1+z)^{\alpha} \int_{z^{*}}^{z} \frac{dz'}{(1+z')^{\alpha}} \frac{d\xi_{\Lambda}(z')}{dz'}$$

where z^* is a transition point where $\rho_D(z^*) = \xi_{\Lambda}(z^*)$

Theorem: z^* always exists near z = 0.

Proof: It follows from the relation

H. Stefancic, J.S. Mod. Phys. Lett. A 21 (2006) 479

$$\frac{d\zeta(z)}{dz} = \frac{\alpha (1+z)^{\alpha-1}}{1-\tilde{\Omega}_M^0} \left(\Omega_M^0 f_M(z;r) - \tilde{\Omega}_M^0\right)$$

This relation can be proven using:

- The matching condition of the two pictures;
- The Bianchi identity.

Then the Theorem follows from the fact that $f_M(0;r)=1$

$$f_M(0;r) = 1$$
 (q.e.d)

Running Λ from Planck Scale Physics

One may expect that the RGE of Λ is totally dominated by sub-Planckian masses:

$$\frac{d \Lambda}{d \ln \mu} = \frac{1}{(4\pi)^2} \sum_i c_i \, \mu^2 M_i^2 + \dots = \frac{1}{(4\pi)^2} \sum_i c_i \, H^2 M_i^2 + \dots$$

$$= \frac{1}{(4\pi)^2} \, \sigma \, H^2 M^2 + \dots$$

$$= \frac{1}{(4\pi)^2} \, \sigma \, H^2 M^2 + \dots$$
With
$$M \equiv \sqrt{\sum_i c_i \, M_i^2} \, .$$
I.L.Shapiro, J.S.
JHEP 0202 (2002) 6
I.L.Shapiro, et al
Phys. Lett. B574 (2003) 149

 Provides a natural explanation for the geometric mean puzzle:

$$\Lambda \simeq \sqrt{\rho_P \, \rho_H} = \sqrt{M_P^4 \, H^4} = M_P^2 \, H^2$$

A semiclassical FLRW with running Λ

$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\rho + \Lambda\right) + H_0^2 \Omega_K^0 (1+z)^2$$

$$\frac{d\Lambda}{dt} + \frac{d\rho}{dt} + 3H(\rho + p) = 0.$$

$$\frac{d\Lambda}{d\ln H} = \frac{1}{(4\pi)^2} \sum_{i} c_i M_i^2 H^2 + \dots = \frac{3\nu}{4\pi} M_P^2 H^2.$$

$$\rho_{\Lambda} \equiv \Lambda = C_1 + C_2 \, \underline{H}^2 \, .$$

Effective equation of state for the variable Λ as a function of the redshift: $\omega_{\rm eff} = \omega_{\rm eff}(z; \nu)$

H. Stefancic, J.S. *Phys. Lett. B624 (2005) 147*

$$\Delta\Omega_M \neq 0$$
 $(\Delta\Omega_M \equiv \Omega_M^0 - \tilde{\Omega}_M^0)$

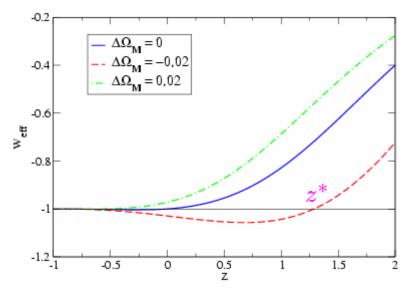
$$\label{eq:objective} \begin{split} \omega_{\rm eff}(z) &= -1 + (1 - \nu) \frac{\Omega_M^0 \, (1 + z)^{3(1 - \nu)} - \tilde{\Omega}_M^0 \, (1 + z)^3}{\Omega_M^0 \, [(1 + z)^{3(1 - \nu)} - 1] - (1 - \nu) \, [\tilde{\Omega}_M^0 \, (1 + z)^3 - 1]} \, . \end{split}$$

$$\Delta\Omega_M=0$$

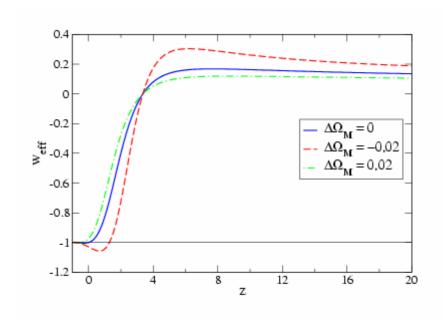
$$\begin{split} \omega_{\rm eff}(z) &= -1 + (1 - \nu) \frac{\Omega_M^0 \left(1 + z\right)^3 \left[(1 + z)^{-3\nu} - 1 \right]}{1 - \nu - \Omega_M^0 + \Omega_M^0 \left(1 + z\right)^3 \left[(1 + z)^{-3\nu} - 1 + \nu \right]} \,. \\ &\simeq -1 - 3 \, \nu \frac{\Omega_M^0}{\Omega_\Lambda^0} \left(1 + z\right)^3 \, \ln(1 + z) \,. \end{split}$$

(case
$$\nu < 0$$
; $\nu = -\nu_0$)

$$\Delta\Omega_M = 0$$
 $\Delta\Omega_M \neq 0$!!



$$(\nu_0 = \frac{1}{12\pi} \simeq 0.026)$$



H. Stefancic, J.S. *Phys. Lett. B 624 (2005) 147*

Adding a dynamical cosmon: "AXCDM" model

(J. Grande, H. Stefancic, J.S., gr-qc/0604057)

Effective EOS of a mixture of cosmic fluids:

$$w_e = \frac{p_D}{\rho_D} = \frac{\omega_1 \, \rho_1 + \omega_2 \, \rho_2 + \dots}{\rho_1 + \rho_2 + \dots}$$

General Bianchi identity. Defining $\alpha_i \equiv 3(1 + \omega_i)$

$$\frac{d}{dt} \left[G \left(\sum_{i} \rho_{i} \right) \right] + G H \sum_{i} \alpha_{i} \rho_{i} = 0$$

Energy conditions

$$p = \omega \rho$$
 $\omega < -1 \ (\rho < 0)$

PM

SEC property sectors and substitution $\omega < -1 \ (\rho > 0)$

In the $\land \times \mathsf{CDM}$ case, with G = const. and separate conservation of matter and DE:

$$\dot{\rho}_{m}+\alpha_{m}\,\rho_{m}\,H=0\,,\quad \alpha_{m}=3(1+\omega_{m})$$
 $\dot{\rho}_{D}+\alpha_{D}\,\rho_{D}\,H=0\,,\quad \alpha_{D}=3(1+\omega_{e})$ with
$$\rho_{D}=\rho_{\Lambda}+\rho_{X}$$

cosmological "constant" contribution cosmon contribution

$$\omega_e = \frac{p_{\Lambda} + p_X}{\rho_{\Lambda} + \rho_X} = -1 + \frac{1}{3} \frac{\alpha_X \rho_X}{\rho_D}$$

Equivalently, we have

$$\dot{\rho}_{\Lambda} + \dot{\rho}_{X} + \alpha_{X} \rho_{X} H = 0$$
, $\alpha_{X} = 3(1 + \omega_{X})$

The AXCDM model satisfies the generalized cosmic sum rule

$$\Omega_m^0 + \Omega_{\Lambda}^0 + \Omega_X^0 + \Omega_K^0 = 1$$

For $\Omega_K^0 = 0 \Rightarrow$ autonomous system:

$$\frac{d\Omega_{X}}{d\zeta} = -\left[\nu \alpha_{m} + (1 - \nu) \alpha_{X}\right] \Omega_{X} - \nu \alpha_{m} \Omega_{\Lambda} + \nu \alpha_{m} \Omega_{c},$$

$$\frac{d\Omega_{\Lambda}}{d\zeta} = \nu (\alpha_{m} - \alpha_{X}) \Omega_{X} + \nu \alpha_{m} \Omega_{\Lambda} - \nu \alpha_{m} \Omega_{c},$$

$$\frac{d\Omega_{c}}{d\zeta} = (\alpha_{m} - \alpha_{X}) \Omega_{X} + \alpha_{m} \Omega_{\Lambda} - \alpha_{m} \Omega_{c}$$

with
$$\zeta \equiv -\ln(1+z)$$
 $\Omega_X(z) = \frac{\rho_m(z)}{\rho_o^0}, \quad \Omega_{\Lambda}(z) = \frac{\rho_{\Lambda}(z)}{\rho_o^0}, \quad \Omega_c(z) = \frac{\rho_c(z)}{\rho_o^0}$

Eigenvalues:

$$\lambda_1 = -\alpha_X (1 - \nu), \quad \lambda_2 = -\alpha_m, \quad \lambda_3 = 0$$

Eigenvectors:

$$\mathbf{v_1} = \begin{pmatrix} 1 - \boldsymbol{\nu} \\ \boldsymbol{\nu} \\ 1 \end{pmatrix}, \quad \mathbf{v_2} = \begin{pmatrix} \frac{-\boldsymbol{\nu} \, \alpha_m}{\alpha_m - \alpha_X} \\ \boldsymbol{\nu} \\ 1 \end{pmatrix}, \quad \mathbf{v_3} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Solution:

$$\Omega(\zeta) = \begin{pmatrix} \Omega_{X}(\zeta) \\ \Omega_{\Lambda}(\zeta) \\ \Omega_{c}(\zeta) \end{pmatrix} = C_1 \mathbf{v}_1 e^{\lambda_1 \zeta} + C_2 \mathbf{v}_2 e^{\lambda_2 \zeta} + C_3 \mathbf{v}_3$$

$$C_{1} = \frac{1 - \Omega_{\Lambda}^{0}}{1 - \nu} - \frac{\Omega_{m}^{0}(\alpha_{m} - \alpha_{X})}{\alpha_{m} - \alpha_{X}(1 - \nu)}, \quad C_{2} = \frac{\Omega_{m}^{0}(\alpha_{m} - \alpha_{X})}{\alpha_{m} - \alpha_{X}(1 - \nu)}, \quad C_{3} = \frac{\Omega_{\Lambda}^{0} - \nu}{1 - \nu}$$

Among the many possibilities (cf gr-qc/0604057), consider

$$0<\alpha_X<2\,,\quad
u=0\Leftrightarrow ext{ quintessence and } \wedge=const.$$

$$(-1<\omega_X<-1/3)$$

$$\Omega_D(z)=\Omega_{\Lambda}^0+\Omega_X^0\,(1+z)^{\alpha_X}$$

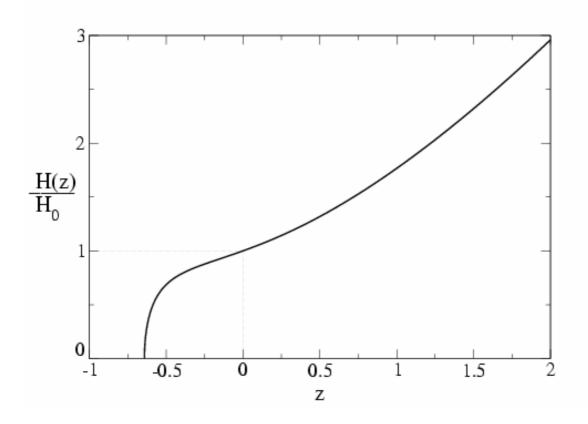
Since
$$\Omega_m^0 + \Omega_X^0 + \Omega_X^0 = 1 \Rightarrow \Omega_A^0 < 0$$
 is possible!

There can be stopping (turning point) of the evolution in the future!

However...

in the **AXCDM** model there are <u>many other</u> stopping possibilities!!

Example of Stopping



$$\Omega_{\Lambda} = 0.75, \, \omega_{X} = -1.85, \, \nu = -\nu_{0}$$

Joan Solà (UB) (Talk at DSU 06)

The next to simplest one is
$$-\delta < \alpha_X < 0$$
, $\nu = 0$ $(\delta > 0)$

The cosmon has $\omega_X < -1 \Rightarrow$ phantom behavior! ("standard" type)

Big Rip?

Yes... except if $\Omega_X^0 < 0$ phantom matter! (non-standard!)

$$\Omega_D(z) = \Omega_{\Lambda}^0 + \Omega_X^0 (1+z)^{\alpha_X} \Rightarrow \text{stopping with } \Omega_{\Lambda}^0 > 0$$

But in the **AXCDM** still <u>many other</u> stopping possibilities ...

$$\nu \neq 0 !!$$

Joan Solà (UB) (Talk at DSU 06)

Nucleosynthesis Constraints

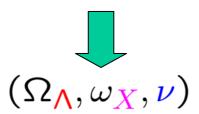
At temperatures $T \lesssim 0.1\,MeV$ the weak interactions (responsible for neutrons and protons to be in equilibrium) freeze-out. The expansion rate is sensitive to the amount of DE, hence primordial nucleosynthesis can place stringent bounds on the parameters of the $\Lambda \times CDM$ model

Define
$$r=rac{
ho_D}{
ho_m}=rac{
ho_\Lambda+
ho_X}{
ho_m}$$
 $\Omega_D^0=0$ $\Omega_D^0=rac{r}{1+r}$ Then $\Omega_D^0\lesssim 10\% \iff r\lesssim 10\%$ $\epsilon\equiv
u(1+\omega_X)\lesssim 10\%$

Parameter Space

$$(\Omega_m, \Omega_{\wedge}, \Omega_{X}, \omega_{X}, \nu)$$

Priors and constraints
$$\begin{cases} \Omega_m = 0.3, & \Omega_K^0 = 0 \\ \Omega_m^0 + \Omega_{\Lambda}^0 + \Omega_X^0 = 1 \end{cases}$$



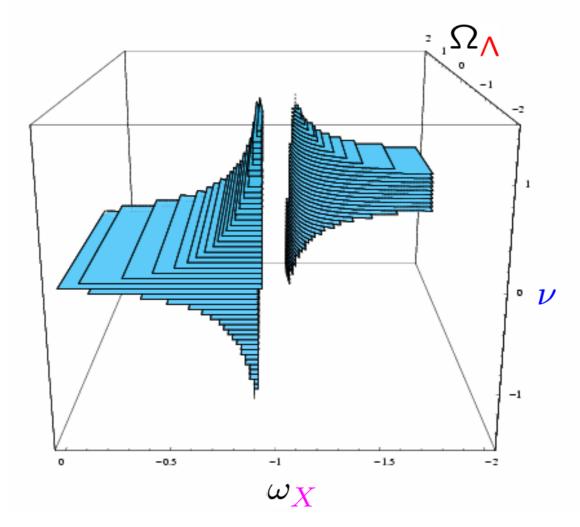
Physical region?

Subspace satisfying:

- i) Nucleosynthesis bound
- ii) Stopping condition

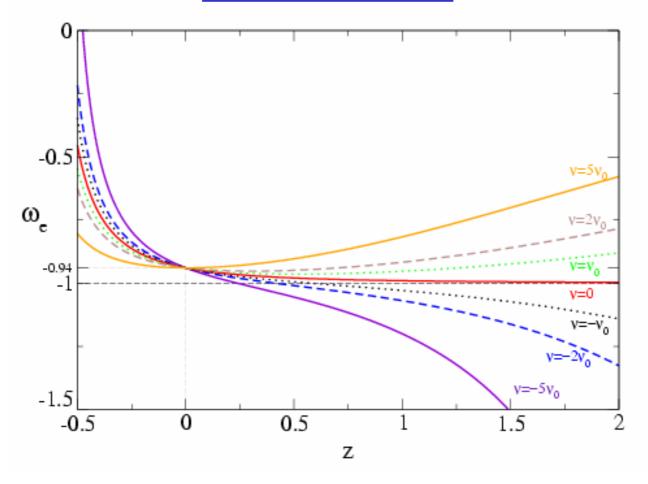
• iii)
$$r \equiv \rho_D/\rho_m < 10$$

Physical subregion of $(\Omega_{\wedge}, \omega_{X}, \nu)$



Joan Solà (UB) (Talk at DSU 06)

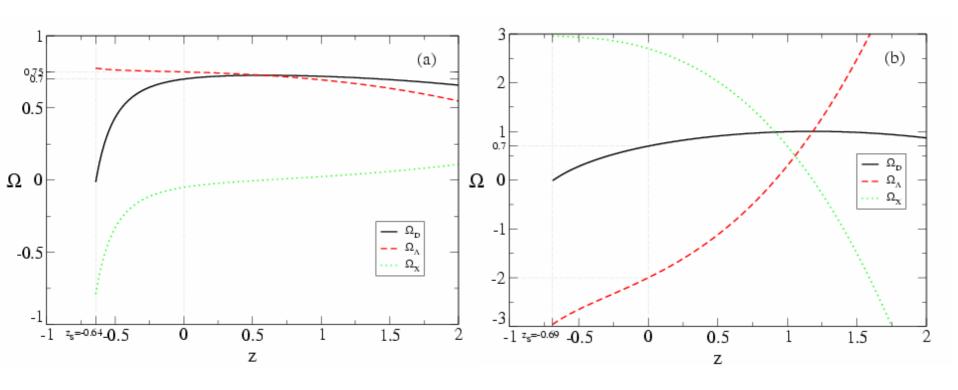
Effective EOS



Comparison of the effective EOS parameter of the Λ XCDM model, ω_e , for fixed values $\omega_X = -1.85$, $\Omega_{\Lambda}^0 = 0.75$, and different values of ν in units of ν_0 . All curves give $\omega_e(0) = -0.94$ at the present time.

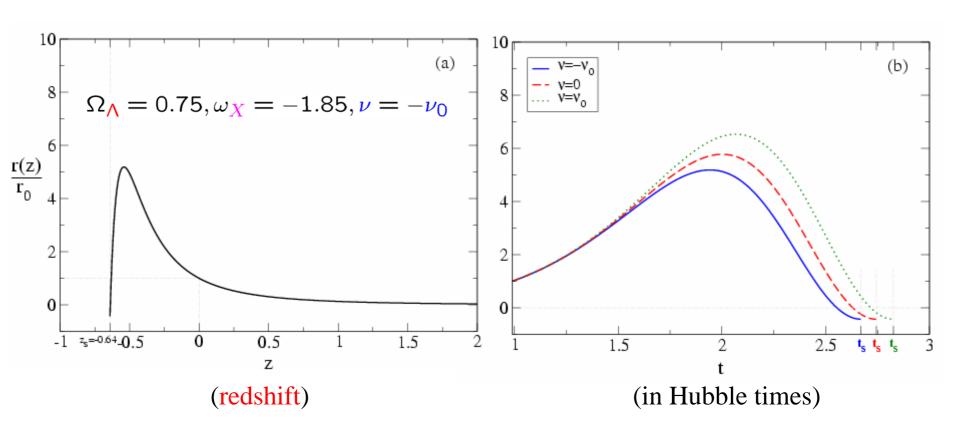
$$(\nu_0 = \frac{1}{12\pi} \simeq 0.026)$$

Evolution of the DE Densities



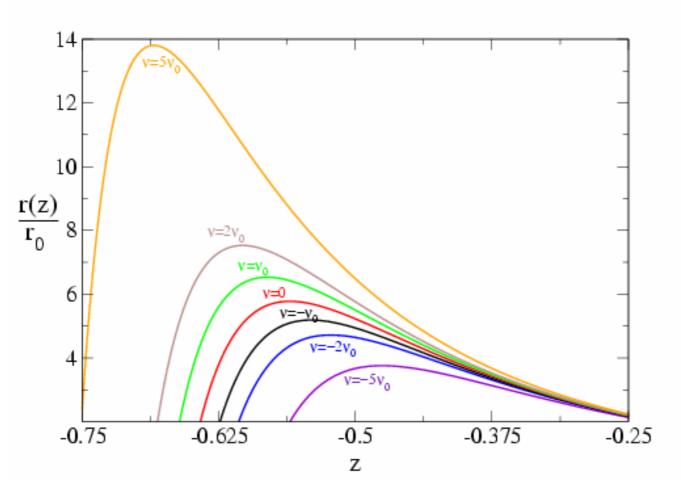
Total and individual DE densities for a cosmon barotropic index of phantom-type $(\omega_X < -1)$ and of quintessence-type $(\omega_X \gtrsim -1)$ respectively: (a) $\omega_X = -1.85$, $\Omega_{\Lambda} = 0.75$, $\nu = -\nu_0$; (b) $\omega_X = -0.93$, $\Omega_{\Lambda} = -2$, $\nu = 0.96$.

Evolution of the Ratio $r = \rho_D/\rho_m$



r as function of redshift z and cosmic time t

Evolution of the Ratio $r = \rho_D/\rho_m$



Evolution of r for $\omega_X=-1.85,~\Omega_{\bigwedge}=0.75$ and different ν

Asymptotic regime of the EOS in the past

$$\Omega_D(z\gg 1) = \begin{cases} -\frac{\epsilon}{\omega_m - \omega_X + \epsilon} \, \Omega_m^0 \, (1+z)^{\alpha_m}, & \text{for } \nu \neq 0 \\ \\ \Omega_{\Lambda}^0 & \text{for } \nu = 0, \quad \alpha_X < 0 \\ \\ \Omega_X^0 \, (1+z)^{\alpha_X} & \text{for } \nu = 0, \quad \alpha_X > 0 \, . \end{cases}$$

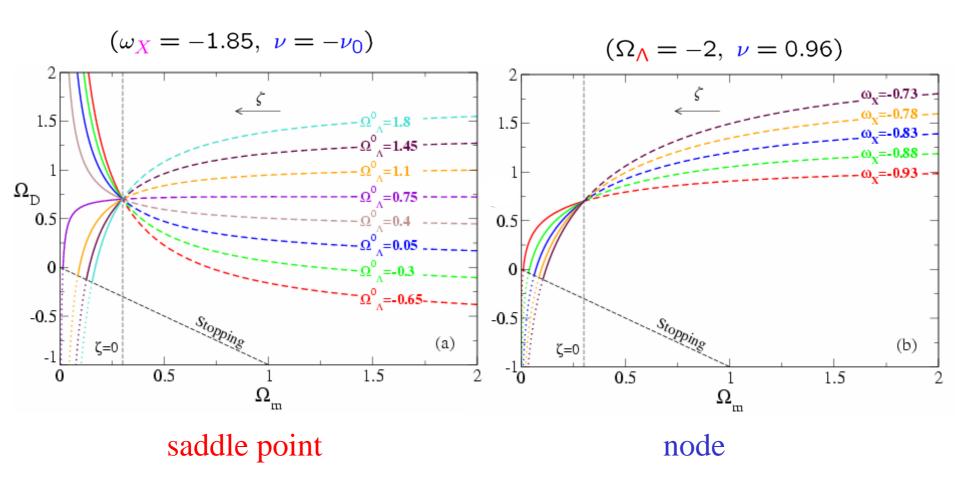
Possible observable effect,

"renormalization" of Ω_m^0 :

$$\Omega_m^0 o \Omega_m^0 \left(1 - rac{\epsilon}{\omega_m - \omega_X + \epsilon}
ight)$$
 $\frac{\delta \Omega_m^0}{\Omega_m^0} \simeq 10\%$

$$rac{\delta\Omega_m^0}{\Omega_m^0}\simeq 10\%$$

Phase trajectories of the cosmological system



Conclusions

- **Dynamical dark energy** ρ_D can be mimicked by a variable Λ :
- In QFT we generally expect Λ/G to be variable: $\Lambda = \Lambda(z)$; its value should have run in the course of the Universe evolution due to quantum effects;
- A variable \(\Lambda/\)G model can be mapped unambiguously to an effective "DE picture" where matter and DE are conserved separately;
- In the **DE picture** the variable Λ -model has an effective **EOS** $\omega_{\rm eff} = \omega_{\rm eff}(z)$ which can be of quintessence and phantom type;
- This scenario could naturally explain the possibly observed crossing of the $\omega_{\rm eff}=-1$ barrier near our time, without resorting to scalar fields;
- Adding a cosmon ("∧XCDM model") ⇒ similar effective EOS features while explaining the Cosmological Coincidence Problem;
- Observable effect : renormalization of Ω_m when comparing intermediate redshift data (from supernovae) and high-z (from CMB);

 Moral: high precision cosmology experiments in the near future, like SNAP and PLANCK, should bear in mind this possibility!!

Decoupling and Λ running

 \diamond We expect from dimensional analysis, decoupling theorem and general covariance, that the **RGE** for the physical Λ may take in principle the form

$$(4\pi)^2 \frac{d\Lambda}{d \ln \mu} = \beta_{\Lambda} = \sum_{n=0}^{\infty} \sum_{i} \alpha_{in} \mu^{2n} \mathcal{M}_i^{4-2n}$$

$$= \sum_{i} A_{i} m_{i}^{4} + \mu^{2} \sum_{j} B_{j} M_{j}^{2} + \mu^{4} \sum_{j} C_{j} + \mu^{6} \sum_{j} \frac{D_{j}}{M_{j}^{2}} + \dots$$

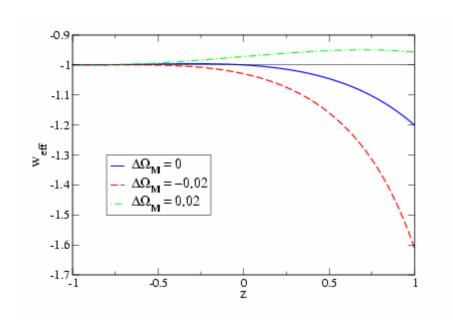
 \Diamond Dimensional analysis not enough to explain β_{Λ} structure. The fact that only even powers of μ are involved stems from the covariance of the effective action and the identification $\mu \sim H$ (I.L.Shapiro & JS, 2001).

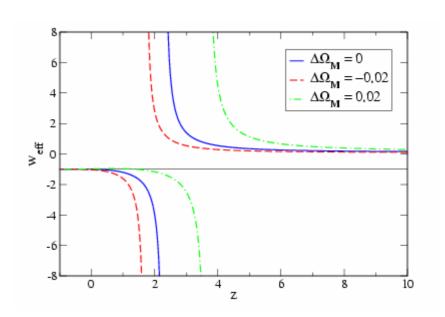
• In the FLRW cosmological framework: $R \sim GT^{\mu}_{\mu} \Rightarrow$

$$\mu \sim R^{1/2} \sim H(t)$$

Effective equation of state for the variable Λ as a function of the redshift: $\omega_{\rm eff} = \omega_{\rm eff}(z; \nu)$

(case
$$\nu > 0$$
; $\nu = \nu_0 \equiv 1/12\pi \simeq 0.026$)





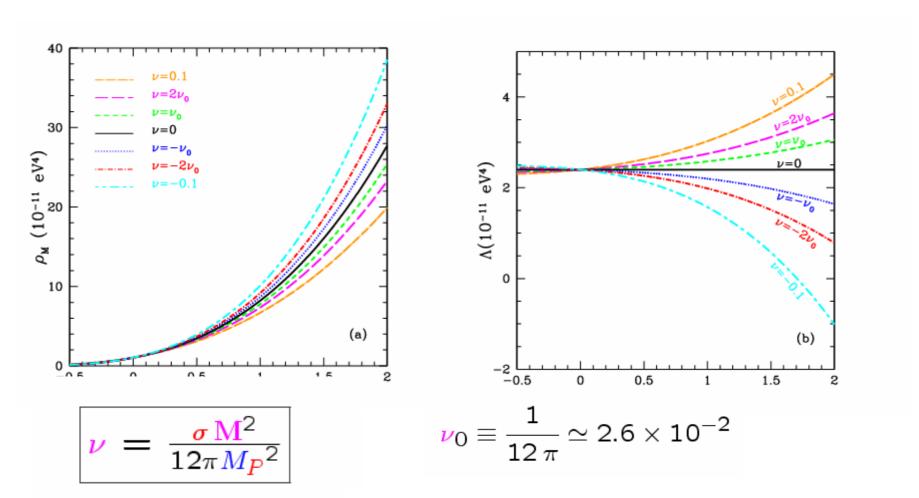
$$(\Omega_M^0 = 0.3, \ \Omega_\Lambda^0 = 0.7, \quad \Delta\Omega_M = \Omega_M^0 - \tilde{\Omega}_M^0)$$

Joan Solà (UB) (Talk at DSU 06)

H. Stefancic, J.S. astro-ph/0505133

Phys. Lett. B (to appear)

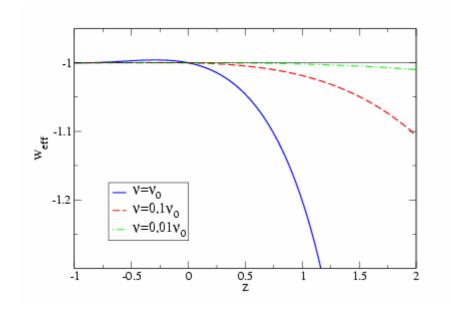
Effects on $\rho_{\rm M}$ and Λ , for $\Omega_{M}^{0}=0.3$, $\Omega_{\Lambda}^{0}=0.7$



C. España-Bonet et al., *JCAP* **0402** (2004) 6.

three values $\nu > 0$:

0: three values $\nu < 0$:



$$(\Omega_M^0 = 0.3, \ \Omega_{\Lambda}^0 = 0.7)$$

$$\Delta\Omega_M=0$$
 !!

$$(\Delta\Omega_M=\Omega_M^0-\tilde{\Omega}_M^0)$$

H. Stefancic, J.S. astro-ph/0505133 *Phys. Lett. B* (to appear)

Using matching condition and the redshift variable, Bianchi identity can be written

$$(1+z) d(\rho_s + \rho_D) = \alpha (\rho_s + \rho_D - \xi_{\wedge}) dz$$

and from standard EC-law of $\rho_s \Rightarrow$

$$\frac{d\rho_{D}(z)}{dz} = \alpha \frac{\rho_{D}(z) - \xi_{\Lambda}(z)}{1+z}$$

- Notice: $\rho_D(z) > \xi_{\Lambda}(z)$ (quintessence) Transition: $\rho_D(z) < \xi_{\Lambda}(z)$ (phantom) $\rho_D(z^*) = \xi_{\Lambda}(z^*)$

$$\rho_D(z^*) = \xi_{\Lambda}(z^*)$$

 \Rightarrow The effective **EOS** for \land is:

$$\begin{aligned} \omega_{\mathrm{eff}}(z) &= -1 + \frac{1}{3} \frac{1+z}{\rho_D} \frac{d\rho_D}{dz} \quad \Rightarrow \quad \omega_{\mathrm{eff}}(z) = -1 + \frac{\alpha}{3} \left(1 - \frac{\xi_{\Lambda}(z)}{\rho_D(z)} \right) \\ & \text{For } \alpha = 3 \text{ (MDE)} \Rightarrow \quad \omega_{\mathrm{eff}}(z) = -\frac{\xi_{\Lambda}(z)}{\rho_D(z)} \end{aligned}$$

Finally, we note that this kind of scenario can also be considered for a variable $\Lambda = \Lambda(z)$ with a standard EC-law for matter.

$$\rho_s(z) = \rho_s(0) (1+z)^{\alpha}$$

Bianchi ident. $\Rightarrow d\xi_{\Lambda}/dt = -(\rho_s/G_0) dG/dt$

$$\frac{d\rho_{D}(z_{1})}{dz} = -\alpha (1+z_{1})^{\alpha-1} \int_{z^{*}}^{z_{1}} \frac{dz'}{(1+z')^{\alpha}} \frac{d\xi_{\Lambda}(z')}{dz'}$$

$$= \alpha (1+z_1)^{\alpha-1} (\rho_s(0)/G_0) [G(z_1) - G(z^*)].$$

In this case the quintessence \rightarrow phantom completely controlled by a variable G = G(z)

if G is asymptotically free \Rightarrow quintessence for $z_1 \leqslant z \leqslant z^*$; if G is "IR free" \Rightarrow phantom

Consider the previous Theorem and compute

$$\frac{d\rho_D(z_1)}{dz} = -\alpha (1+z_1)^{\alpha-1} \int_{z^*}^{z_1} \frac{dz'}{(1+z')^{\alpha}} \frac{d\xi_{\Lambda}(z')}{dz'}$$

Naive expectation: for increasing/decreasing ξ_{Λ} with redshift $\Rightarrow \omega_{\rm eff}(z) \gtrsim -1/\omega_{\rm eff}(z) \lesssim -1$.

(**False** in general!)

e.g. if $d\xi_{\Lambda}(z)/dz < 0$ and $z^* < z_1$, the observer at z_1 will see quintessence (counterintuitive!)

But if $z_1 < z^*$ he/she will see phantom DE. If $z_1 = 0$ this case could just correspond to the present observational data!!