Why anthropic reasoning does not predict Λ

Roberto Trotta (with Glenn Starkman)

Oxford Astrophysics & Royal Astronomical Society
Answering the big questions:

Is our Universe “special”?

Why is our Universe hospitable for life?

Is there an anthropic explanation to Λ?
Anthropic coincidences?

Are physical constants tuned for life?

- *Primordial fluctuations amplitude* Q
- α_{EM}/G and α_s
- *Cosmological constant* Λ, ...

Possible viewpoints:

- *Deeper symmetry / laws of Nature*

 (but what determined THAT particular symmetry in the first place?)

- *Design* or *necessity*

 (outside the scope of scientific investigation)

- *Any parameters will do* (no explanatory power)

- *Multiverse: we must live in one “realization” favourable for life*

Life in a multiverse
The cosmological constant problem:

why is $\Lambda/M_{Pl} \approx 10^{-123}$?

The anthropic “solution”:

if $\Lambda \gg 1$ galaxies cannot form
hence no observers

(Weinberg, 1987)

Shortcuts & difficulties:

- What counts as observers?
- Which parameters are allowed to vary?
- Is the multiverse a scientific (ie testable) theory?
Which parameters should we vary?

(Tegmark at al 2005)

if Λ, Q and ξ varied:

$$\Lambda = 10^{17} \Lambda_0$$
perfectly “viable”!

(Aguirre 2001)

(Tegmark at al 2005)

“Prediction” only successfull conditional on ξ, Q = fixed
(AND that $T_{CMB} = 2.73$ K)
Probability theory and Λ

\[f_{\text{obs}}(\Lambda) = f(\Lambda) f_{\text{sel}}(\Lambda) \]

- prob of observing = sampling distribution * selection function

- "random sample" "typical observer"

The sampling distribution $f(\Lambda)$

- As a frequency of outcomes? (untestable in cosmology)
- Flat distribution (the "Weinberg conjecture")? (assumed)
- Ergodic arguments? (unclear in an infinite Universe)
- No operational def' on of "random" sample: probabilities are NOT physical properties!
Which probability theory for cosmology?

Probability as frequency
- Repeatable sampling
- Parent distribution
- Asymptotically \(N \to \infty \)

Probability as state of knowledge
- Only 1 sample
- “Multiverse” approach ill-defined
- \(N \) finite & limited
On the physical reality of probability

Coin tossing: is the coin fair?

Test the null hypothesis \(H_0: p = 0.5 \)

“The numbers \(p_r \) [the frequency with which a certain face comes up in die tossing] should, in fact, be regarded as physical constants of the particular die that we are using.”

(Cramer, 1946)

Are physical probabilities meaningful?
What does it mean “to throw at random”?

Roberto Trotta
With careful adjustment, the coin started heads up always lands heads up – 100% of the time. We conclude that coin-tossing is “physics” not “random”.

(Diaconis et al 2004; Jaynes 1996)

Symmetric Lagrangian: $\Gamma_T = \Gamma_H$

$p \neq 0.5$: Γ_T / Γ_H is NOT independent on location!
The selection function

\[f_{\text{obs}}(\Lambda) = f(\Lambda) \ f_{\text{sel}}(\Lambda) \]

What counts as “observers”? (it’s the total number that counts!)
What if the Universe is infinite? (number density/Hubble volume?)
Do observers outside your causal horizon count?
Certainly important to integrate over time: we might not be “typical” in that we are early arrivals...

An explicit counter-example: MANO weighting
Maximum Number of Allowed Observations
MANO weighting of Universes

- Integrate over lifetime of the Universe to obtain the total number of observations that can POTENTIALLY be carried out.
- Universes that allow for more observations should weight more.
- Gauge invariant, time independent quantity.
- Maximum number of thermodynamic processes in a $\Lambda > 0$ Universe:

$$N_{\text{max}} < \frac{E_{\text{coll}}}{k_B} T ds$$

- This assumes “rare observers”, otherwise density of observers sets the limit.
- Still suffers from dependence of micro-physics + details of how civilizations arise & evolve.
Probability of observing Λ

- **2 parameters model:**

 \[R = \frac{\Omega_\Lambda}{\Omega_\Lambda^0} \quad \tau = \frac{t_{\text{obs}}}{t_0} \]

 \[\log(R) \approx -379 \] (landscape scenario)

 \[\propto R^{-2} \]

 \[\propto R^{-1} g(\tau) \]

<table>
<thead>
<tr>
<th>τ</th>
<th>$f_{\text{obs}}(R>1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>8×10^{-3}</td>
</tr>
<tr>
<td>1</td>
<td>3×10^{-5}</td>
</tr>
<tr>
<td>3</td>
<td>5×10^{-8}</td>
</tr>
<tr>
<td>10</td>
<td>2×10^{-16}</td>
</tr>
</tbody>
</table>
Final remarks

PROBABILITY THEORY AND COSMOLOGY

- Probabilities are not physical properties but states of knowledge
- Uniqueness of the Universe calls for a fully Bayesian approach

ANTHROPIC REASONING AND SELECTION EFFECTS

- Outcome depends on selection function
- Probability theory as logic at odds with multiverse approach
- Within “traditional” anthropic arguments: you should at least integrate over time
- MANO counterexample: $P(\Lambda > 0.7) \sim 10^{-5}$
- Anthropic “predictions” completely dependent on (many) assumptions