Unified Model for Inflation and Dark Energy

Gabriel Zsembinszki

IFAE - UAB, Barcelona

Content

- Introduction
- The Model
 - a) Inflation
 - b) Dark Energy

Discussions and Conclusions

Introduction

- Standard Model (SM) is not the ultimate theory
- New symmetries are supposed to exist
- Global symmetries are expected to be explicitly broken by quantum gravity, apart from SSB
- For very small explicit breaking, the resulting PGB is a Dark Energy (DE) candidate
- Consider these effects in inflationary models and obtain a <u>unified model</u> for <u>Inflation</u> and <u>DE</u>

The Model

- U(1) global symmetry with SSB at scale f
- Complex scalar field charged under U(1)

$$\psi(x) = \phi(x) e^{i\theta(x)/f}$$

• U(1) - symmetric potential for ψ

$$V_1(\psi) = \frac{1}{4} \lambda (|\psi|^2 - f^2)^2$$

• New real scalar field $\chi(x)$ interacting with $\psi(x)$

$$V_{2}(\psi, \chi) = \frac{1}{2} m_{\chi}^{2} \chi^{2} + \left(\Lambda^{2} - \frac{\alpha^{2} |\psi|^{2} \chi^{2}}{4\Lambda^{2}} \right)^{2}$$

The Model

Small explicit U(1) - breaking term

$$V_{\text{non-sym}}(\psi) = -g \frac{1}{M_P^{n-3}} |\psi|^n (\psi e^{-i\delta} + h.c.), n \ge 4$$

• After writing $\psi(x) = \phi(x) e^{i\theta(x)/f}$ and eliminating global phases, we get

$$V_{\text{non-sym}}(\phi,\theta) = -2g \frac{\phi^{n+1}}{M_P^{n-3}} \cos(\theta/f)$$

• This gives a small mass to θ and is related to DE, being negligible during inflation

The Model – Inflation

Hybrid inflation type

$$V_{sym}(\phi,\chi) = \Lambda^4 + \frac{1}{2}(m_{\chi}^2 - \alpha^2 \phi^2)\chi^2 + \frac{1}{4}\lambda(\phi^2 - f^2)^2 + \dots$$

• After U(1) SSB, $\phi \approx 0$ and χ is stable, but ϕ is not

$$M_{\chi}^{2}(\phi) \equiv \frac{1}{2}(m_{\chi}^{2} - \alpha^{2}\phi^{2}) \approx \frac{1}{2}m_{\chi}^{2} > 0$$

$$m_{\phi}^2 = -\frac{1}{2}\lambda f^2 < 0$$

• When $\phi = \phi_{cr} = m_\chi / \alpha$ then χ becomes unstable and inflation ends

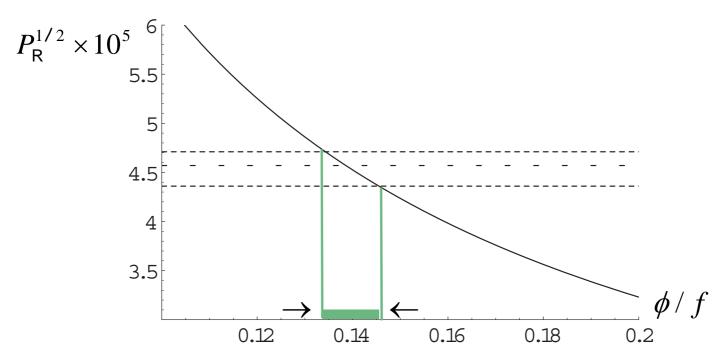
The Model - Inflation

Conditions for inflation

– Vacuum energy dominance: $\Lambda^4 \ge \frac{1}{4} \lambda f^4$

- Slow-roll of the inflation:
$$\varepsilon = \frac{M_P^2}{16\pi} \left(\frac{V'}{V} \right)^2 << 1$$
 $|\eta| = \left| \frac{M_P^2}{8\pi} \frac{V''}{V} \right| << 1$

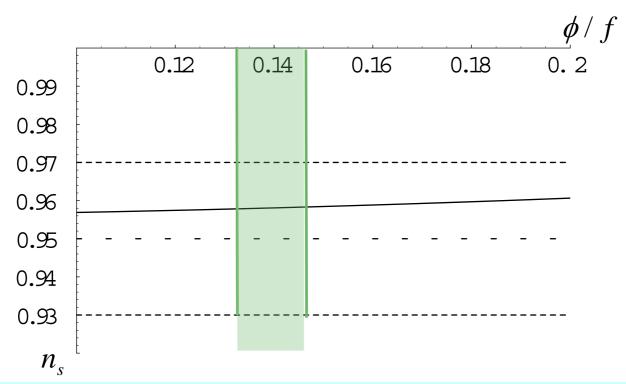
- Sufficient e-folds of inflation:
$$N(\phi) = \frac{8\pi}{M_P^2} \int_{\phi_e}^{\phi} \frac{V}{V'} d\phi \approx 60$$


- Sudden end of inflation:
$$\left|\Delta M_{\chi}^{2}\right|_{\phi=\phi_{c}} > H^{2}$$

- Predictions consistent with observations: $P_{R}^{1/2}$, n_{s} , $r \dots$

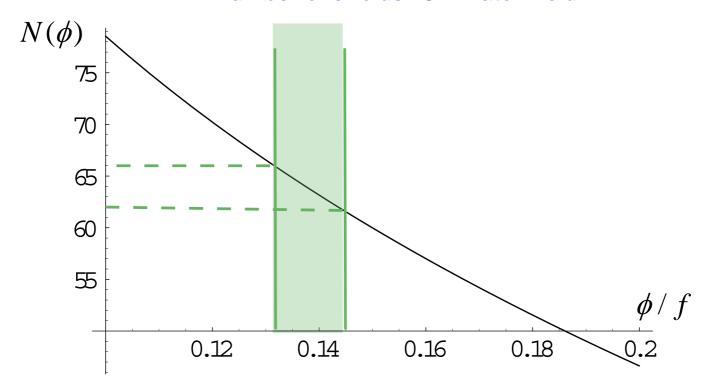
• Results:
$$f \le M_P$$
 $6 \times 10^{-14} \le \lambda \le 1.7 \times 10^{-12}$

The Model - Inflation


Amplitude of curvature perturbations vs. Inflaton field

Parameter values:
$$f = 5 \times 10^{18} \, \text{GeV}$$
; $\lambda = 5 \times 10^{-14}$; $\alpha = 10^{-4}$
 $\Lambda = 4.5 \times 10^{15} \, \text{GeV}$; $m_{\chi} = 2.5 \times 10^{14} \, \text{GeV}$

The Model — Inflation


Spectral index vs. Inflaton field

Parameter values:
$$f = 5 \times 10^{18} \, \text{GeV}$$
; $\lambda = 5 \times 10^{-14}$; $\alpha = 10^{-4}$
 $\Lambda = 4.5 \times 10^{15} \, \text{GeV}$; $m_{\chi} = 2.5 \times 10^{14} \, \text{GeV}$

The Model - Inflation

Number of e-folds vs. Inflaton field

Parameter values: $f = 5 \times 10^{18} \, \text{GeV}$; $\lambda = 5 \times 10^{-14}$; $\alpha = 10^{-4}$ $\Lambda = 4.5 \times 10^{15} \, \text{GeV}$; $m_{\chi} = 2.5 \times 10^{14} \, \text{GeV}$

The Model – Dark Energy

• θ - field has a potential given by $V_{non-sym}(\psi)$

$$V(\theta) = -g \left(\frac{f}{M_P}\right)^{n-1} M_P \theta^2 = \frac{1}{2} m_\theta^2 \theta^2$$

- Requirements in order to be a DE candidate
 - i. slowly varying field in a potential: $m_{\theta} < 3H_0$
 - ii. energy density comparable to the critical: $\rho_{\theta} pprox
 ho_{c0}$
- Results: $|f \ge \frac{1}{6}M_P|$ independent of n
 - $|g| < 10^{-119}$ for the lowest n = 4

Discussions and Conclusions

The SSB scale f must be at Planck scale

$$\left| \frac{1}{6} M_P \le f \le M_P \right|$$

$$\lambda \approx 10^{-12} - 10^{-13}$$

Extremely small values for g - coupling

$$g \le 10^{-119}$$

Such small values are not unexpected, e.g.

R.Kallosh, A.D.Linde, D.A.Linde, L.Susskind, Phys.Rev.D52:912-935,1995

Discussions and Conclusions

Summarize:

- new global U(1) symmetry
- complex scalar field $\psi(x)$ coupled to a real $\chi(x)$

$$\psi(x) = \phi(x) e^{i\theta(x)/f}$$

- $-\phi(x)$ is the inflaton field
- $-\theta(x)$ is the field describing DE
- the energy density of $\theta(x)$ is due to a small explicit breaking of U(1) at Planck scale